- Browse by Author
Browsing by Author "Ramdas, Baskar"
Now showing 1 - 10 of 27
Results Per Page
Sort Options
Item Alkynyl nicotinamides show antileukemic activity in drug-resistant acute myeloid leukemia(The American Society for Clinical Investigation, 2024-06-17) Ramdas, Baskar; Dayal, Neetu; Pandey, Ruchi; Larocque, Elizabeth; Kanumuri, Rahul; Pasupuleti, Santhosh Kumar; Liu, Sheng; Kanellopoulou, Chrysi; Chu, Elizabeth Fei Yin; Mohallem, Rodrigo; Virani, Saniya; Chopra, Gaurav; Aryal, Uma K.; Lapidus, Rena; Wan, Jun; Emadi, Ashkan; Haneline, Laura S.; Holtsberg, Frederick W.; Aman, M. Javad; Sintim, Herman O.; Kapur, Reuben; Pediatrics, School of MedicineActivating mutations of FLT3 contribute to deregulated hematopoietic stem and progenitor cell (HSC/Ps) growth and survival in patients with acute myeloid leukemia (AML), leading to poor overall survival. AML patients treated with investigational drugs targeting mutant FLT3, including Quizartinib and Crenolanib, develop resistance to these drugs. Development of resistance is largely due to acquisition of cooccurring mutations and activation of additional survival pathways, as well as emergence of additional FLT3 mutations. Despite the high prevalence of FLT3 mutations and their clinical significance in AML, there are few targeted therapeutic options available. We have identified 2 novel nicotinamide-based FLT3 inhibitors (HSN608 and HSN748) that target FLT3 mutations at subnanomolar concentrations and are potently effective against drug-resistant secondary mutations of FLT3. These compounds show antileukemic activity against FLT3ITD in drug-resistant AML, relapsed/refractory AML, and in AML bearing a combination of epigenetic mutations of TET2 along with FLT3ITD. We demonstrate that HSN748 outperformed the FDA-approved FLT3 inhibitor Gilteritinib in terms of inhibitory activity against FLT3ITD in vivo.Item An IL-9-pulmonary macrophage axis defines the allergic lung inflammatory environment(American Association for the Advancement of Science, 2022) Fu, Yongyao; Wang, Jocelyn; Zhou, Baohua; Pajulas, Abigail; Gao, Hongyu; Ramdas, Baskar; Koh, Byunghee; Ulrich, Benjamin J.; Yang, Shuangshuang; Kapur, Reuben; Renauld, Jean-Christophe; Paczesny, Sophie; Liu, Yunlong; Tighe, Robert M.; Licona-Limón, Paula; Flavell, Richard A.; Takatsuka, Shogo; Kitamura, Daisuke; Tepper, Robert S.; Sun, Jie; Kaplan, Mark H.; Microbiology and Immunology, School of MedicineDespite IL-9 functioning as a pleiotropic cytokine in mucosal environments, the IL-9-responsive cell repertoire is still not well defined. Here, we found that IL-9 mediates proallergic activities in the lungs by targeting lung macrophages. IL-9 inhibits alveolar macrophage expansion and promotes recruitment of monocytes that develop into CD11c+ and CD11c- interstitial macrophage populations. Interstitial macrophages were required for IL-9-dependent allergic responses. Mechanistically, IL-9 affected the function of lung macrophages by inducing Arg1 activity. Compared with Arg1-deficient lung macrophages, Arg1-expressing macrophages expressed greater amounts of CCL5. Adoptive transfer of Arg1+ lung macrophages but not Arg1- lung macrophages promoted allergic inflammation that Il9r-/- mice were protected against. In parallel, the elevated expression of IL-9, IL-9R, Arg1, and CCL5 was correlated with disease in patients with asthma. Thus, our study uncovers an IL-9/macrophage/Arg1 axis as a potential therapeutic target for allergic airway inflammation.Item Author Correction: Mutant p53 drives clonal hematopoiesis through modulating epigenetic pathway(Nature Publishing Group, 2020-07-28) Chen, Sisi; Wang, Qiang; Yu, Hao; Capitano, Maegan L.; Vemula, Sasidhar; Nabinger, Sarah C.; Gao, Rui; Yao, Chonghua; Kobayashi, Michihiro; Geng, Zhuangzhuang; Fahey, Aidan; Henley, Danielle; Liu, Stephen Z.; Barajas, Sergio; Cai, Wenjie; Wolf, Eric R.; Ramdas, Baskar; Cai, Zhigang; Gao, Hongyu; Luo, Na; Sun, Yang; Wong, Terrence N.; Link, Daniel C.; Liu, Yunlong; Boswell, H. Scott; Mayo, Lindsey D.; Huang, Gang; Kapur, Reuben; Yoder, Mervin C.; Broxmeyer, Hal E.; Gao, Zhonghua; Liu, Yan; Biochemistry and Molecular Biology, School of MedicineItem Combined heterozygosity of FLT3 ITD, TET2, and DNMT3A results in aggressive leukemia(The American Society for Clinical Investigation, 2022-09-08) Ramdas, Baskar; Reddy, Palam Lakshmi; Mali, Raghuveer Singh; Pasupuleti, Santhosh Kumar; Zhang, Ji; Kelley, Mark R.; Paczesny, Sophie; Zhang, Chi; Kapur, Reuben; Pediatrics, School of MedicineHeterozygous mutations in FLT3ITD, TET2, and DNMT3A are associated with hematologic malignancies in humans. In patients, cooccurrence of mutations in FLT3ITD combined with TET2 (TF) or FLT3ITD combined with DNMT3A (DF) are frequent. However, in some rare complex acute myeloid leukemia (AML), all 3 mutations cooccur - i.e., FLT3ITD, TET2, and DNMT3A (TFD). Whether the presence of these mutations in combination result in quantitative or qualitative differences in disease manifestation has not been investigated. We generated mice expressing heterozygous Flt3ITD and concomitant for either heterozygous loss of Tet2 (TF) or Dnmt3a (DF) or both (TFD). TF and DF mice did not induce disease early on, in spite of similar changes in gene expression; during the same time frame, an aggressive form of transplantable leukemia was observed in TFD mice, which was mostly associated with quantitative but not qualitative differences in gene expression relative to TF or DF mice. The gene expression signature of TFD mice showed remarkable similarity to the human TFD gene signature at the single-cell RNA level. Importantly, TFD-driven AML responded to a combination of drugs that target Flt3ITD, inflammation, and methylation in a mouse model, as well as in a PDX model of AML bearing 3 mutations.Item COOPERATION OF AML1-ETO AND ONCOGENIC KIT IN ACUTE MYELOGENOUS LEUKEMIA(Office of the Vice Chancellor for Research, 2010-04-09) Martin, Holly; Ma, Peilin; Ramdas, Baskar; Kapur, ReubenA significant portion of AML patients have the cytogenetic abnormality t(8;21) which generates the fusion protein AML1-ETO, leading to a disruption of the core binding factor complex that regulates transcription of hematological genes. Patients harboring the translocation alone usually have a good prognosis; however, a substantial portion of patients bearing an additional oncogenic receptor tyrosine kinase, KIT, mutation have significantly worse prognosis. A mutation of aspartic acid to valine (KITD814V) in the activation loop results in altered substrate recognition and utilization, constitutive tyrosine autophosphorylation, and promiscuous signaling. Little is known concerning possible mechanisms of cooperation between AML1-ETO and KITD814V. Using an IL3 dependent murine myeloid cell line, we show that growth of AML1-ETO bearing cells remain ligand dependent, while cells that express both AML1-ETO and KITD814V demonstrate ligand independent proliferation. Furthermore, functional assays show that expression of AML1-ETO and KITD814V leads to an increase in cell cycling and decrease in apoptosis that may contribute to the observed ligand independent proliferation. Using a syngenic murine transplantation model we demonstrate that mice transplanted with AML1-ETO and KITD814V bearing cells succumb to a fatal myeloproliferative disease (MPD)-like phenotype, while AML1-ETO expressing mice remain disease free. This suggests that AML1-ETO alone is not sufficient to induce ligand independent growth, nor MPD, but may cooperate with KITD814V to enhance proliferation. Continuing research aims to investigate mechanisms of cooperation between KITD814V and AML1-ETO that contribute to ligand independent growth in vitro, transformation in vivo, and poor overall prognosis in AML patients bearing the two mutations.Item Deficiency of Src family kinases compromises the repopulating ability of hematopoietic stem cells(Elsevier, 2008-05) Orschell, Christie M.; Borneo, Jovencio; Munugalavadla, Veerendra; Ma, Peilin; Sims, Emily; Ramdas, Baskar; Yoder, Mervin C.; Kapur, Reuben; Department of Medicine, IU School of MedicineOBJECTIVE: Src family kinases (SFK) have been implicated in regulating growth factor and integrin-induced proliferation, migration, and gene expression in multiple cell types. However, little is known about the role of these kinases in the growth, homing, and engraftment potential of hematopoietic stem and progenitor cells. RESULTS: Here we show that loss of hematopoietic-specific SFKs Hck, Fgr, and Lyn results in increased number of Sca-1(+)Lin(-) cells in the bone marrow, which respond differentially to cytokine-induced growth in vitro and manifest a significant defect in the long-term repopulating potential in vivo. Interestingly, a significant increase in expression of adhesion molecules, known to coincide with the homing potential of wild-type bone marrow cells is also observed on the surface of SFK(-/-) cells, although, this increase did not affect the homing potential of more primitive Lin(-)Sca-1(+) SFK(-/-) cells. The stem cell-repopulating defect observed in mice transplanted with SFK(-/-) bone marrow cells is due to the loss of Lyn Src kinase, because deficiency of Lyn, but not Hck or Fgr, recapitulated the long-term stem cell defect observed in mice transplanted with SFK(-/-) bone marrow cells. CONCLUSIONS: Taken together, our results demonstrate an essential role for Lyn kinase in positively regulating the long-term and multilineage engraftment of stem cells, which is distinct from its role in mature B cells and myeloid cells.Item DPP4 Truncated GM-CSF & IL-3 Manifest Distinct Receptor Binding & Regulatory Functions Compared to their Full Length Forms(Nature Publishing group, 2017-11) O’Leary, Heather Ann; Capitano, Maegan; Cooper, Scott; Mantel, Charlie; Boswell, H. Scott; Kapur, Reuben; Ramdas, Baskar; Chan, Rebecca; Deng, Lisa; Qu, Cheng-Kui; Broxmeyer, Hal E.; Microbiology and Immunology, School of MedicineDipeptidylpeptidase 4 (DPP4/CD26) enzymatically cleaves select penultimate amino acids of proteins, including colony stimulating factors (CSFs), and has been implicated in cellular regulation. To better understand the role of DPP4 regulation of hematopoiesis, we analyzed the activity of DPP4 on the surface of immature blood cells and then comparatively assessed the interactions and functional effects of full-length (FL) and DPP4 truncated factors [(T)-GM-CSF and- IL-3] on both in vitro and in vivo models of normal and leukemic cells. T-GM-CSF and T-IL-3 had enhanced receptor binding, but decreased CSF activity, compared to their FL forms. Importantly, T-GM-CSF and T-IL-3 significantly, and reciprocally, blunted receptor binding and myeloid progenitor cell proliferation activity of both FL-GM-CSF and FL-IL-3 in vitro and in vivo. Similar effects were apparent in vitro using cluster forming cells from patients with Acute Myeloid Leukemia (AML) regardless of cytogenetic or molecular alterations and in vivo utilizing animal models of leukemia. This suggests that DPP4 T-molecules have modified binding and functions compared to their FL counterparts and may serve regulatory roles in normal and malignant hematopoiesis.Item Driver Mutations in Leukemia Promote Disease Pathogenesis through a Combination of Cell-Autonomous and Niche Modulation(Elsevier, 2020-07-14) Ramdas, Baskar; Mali, Raghuveer Singh; Palam, Lakshmi Reddy; Pandey, Ruchi; Cai, Zhigang; Pasupuleti, Santhosh Kumar; Burns, Sarah S.; Kapur, Reuben; Pediatrics, School of MedicineStudies of patients with acute myeloid leukemia (AML) have led to the identification of mutations that affect different cellular pathways. Some of these have been classified as preleukemic, and a stepwise evolution program whereby cells acquire additional mutations has been proposed in the development of AML. How the timing of acquisition of these mutations and their impact on transformation and the bone marrow (BM) microenvironment occurs has only recently begun to be investigated. We show that constitutive and early loss of the epigenetic regulator, TET2, when combined with constitutive activation of FLT3, results in transformation of chronic myelomonocytic leukemia-like or myeloproliferative neoplasm-like phenotype to AML, which is more pronounced in double-mutant mice relative to mice carrying mutations in single genes. Furthermore, we show that in preleukemic and leukemic mice there are alterations in the BM niche and secreted cytokines, which creates a permissive environment for the growth of mutation-bearing cells relative to normal cells.Item Hyperglycemia cooperates with Tet2 heterozygosity to induce leukemia driven by proinflammatory cytokine–induced lncRNA Morrbid(American Society for Clinical Investigation, 2021-01-04) Cai, Zhigang; Lu, Xiaoyu; Zhang, Chi; Nelanuthala, Sai; Aguilera, Fabiola; Hadley, Abigail; Ramdas, Baskar; Fang, Fang; Nephew, Kenneth; Kotzin, Jonathan J.; Williams, Adam; Henao-Mejia, Jorge; Haneline, Laura; Kapur, Reuben; Microbiology and Immunology, School of MedicineDiabetes mellitus (DM) is a risk factor for cancer. The role of DM-induced hyperglycemic (HG) stress in blood cancer is poorly understood. Epidemiologic studies show that individuals with DM are more likely to have a higher rate of mutations in genes found in pre-leukemic hematopoietic stem and progenitor cells (pre-LHSPCs) including TET2. TET2-mutant pre-LHSPCs require additional hits to evolve into full-blown leukemia and/or an aggressive myeloproliferative neoplasm (MPN). Intrinsic mutations have been shown to cooperate with Tet2 to promote leukemic transformation. However, the extrinsic factors are poorly understood. Using a mouse model carrying Tet2 haploinsufficiency to mimic the human pre-LHSPC condition and HG stress, in the form of an Ins2Akita/+ mutation, which induces hyperglycemia and type 1 DM, we show that the compound mutant mice developed a lethal form of MPN and/or acute myeloid leukemia (AML). RNA-Seq revealed that this was due in part to upregulation of proinflammatory pathways, thereby generating a feed-forward loop, including expression of the antiapoptotic, long noncoding RNA (lncRNA) Morrbid. Loss of Morrbid in the compound mutants rescued the lethality and mitigated MPN/AML. We describe a mouse model for age-dependent MPN/AML and suggest that hyperglycemia acts as an environmental driver for myeloid neoplasms, which could be prevented by reducing expression levels of the inflammation-related lncRNA Morrbid.Item Inhibition of BTK and PI3Kδ impairs the development of human JMML stem and progenitor cells(Elsevier, 2022) Ramdas, Baskar; Yuen, Lisa Deng; Palam, Lakshmi Reddy; Patel, Roshini; Pasupuleti, Santhosh Kumar; Jideonwo, Victoria; Zhang, Ji; Maguire, Callista; Wong, Eric; Kanumuri, Rahul; Zhang, Chujing; Sandusky, George; Chan, Rebecca J.; Zhang, Chi; Stieglitz, Elliot; Haneline, Laura; Kapur, Reuben; Pediatrics, School of MedicineJuvenile myelomonocytic leukemia (JMML) is an aggressive myeloproliferative neoplasia that lacks effective targeted chemotherapies. Clinically, JMML manifests as monocytic leukocytosis, splenomegaly with consequential thrombocytopenia. Most commonly, patients have gain-of-function (GOF) oncogenic mutations in PTPN11 (SHP2), leading to Erk and Akt hyperactivation. Mechanism(s) involved in co-regulation of Erk and Akt in the context of GOF SHP2 are poorly understood. Here, we show that Bruton’s tyrosine kinase (BTK) is hyperphosphorylated in GOF Shp2-bearing cells and utilizes B cell adaptor for PI3K to cooperate with p110δ, the catalytic subunit of PI3K. Dual inhibition of BTK and p110δ reduces the activation of both Erk and Akt. In vivo, individual targeting of BTK or p110δ in a mouse model of human JMML equally reduces monocytosis and splenomegaly; however, the combined treatment results in a more robust inhibition and uniquely rescues anemia and thrombocytopenia. RNA-seq analysis of drug-treated mice showed a profound reduction in the expression of genes associated with leukemic cell migration and inflammation, leading to correction in the infiltration of leukemic cells in the lung, liver, and spleen. Remarkably, in a patient derived xenograft model of JMML, leukemia-initiating stem and progenitor cells were potently inhibited in response to the dual drug treatment.
- «
- 1 (current)
- 2
- 3
- »