- Browse by Author
Browsing by Author "Pu, Xinzhu"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Contribution of Environment and Genetics to Pancreatic Cancer Susceptibility(Public Library of Science, 2014-03-20) Hocevar, Barbara A.; Kamendulis, Lisa M.; Pu, Xinzhu; Perkins, Susan M.; Wang, Zheng-Yu; Johnston, Erica L.; DeWitt, John M.; Li, Lang; Loehrer, Patrick J.; Klaunig, James E.; Chiorean, E. Gabriela; Medicine, School of MedicineSeveral risk factors have been identified as potential contributors to pancreatic cancer development, including environmental and lifestyle factors, such as smoking, drinking and diet, and medical conditions such as diabetes and pancreatitis, all of which generate oxidative stress and DNA damage. Oxidative stress status can be modified by environmental factors and also by an individual's unique genetic makeup. Here we examined the contribution of environment and genetics to an individual's level of oxidative stress, DNA damage and susceptibility to pancreatic cancer in a pilot study using three groups of subjects: a newly diagnosed pancreatic cancer group, a healthy genetically-unrelated control group living with the case subject, and a healthy genetically-related control group which does not reside with the subject. Oxidative stress and DNA damage was evaluated by measuring total antioxidant capacity, direct and oxidative DNA damage by Comet assay, and malondialdehyde levels. Direct DNA damage was significantly elevated in pancreatic cancer patients (age and sex adjusted mean ± standard error: 1.00±0.05) versus both healthy unrelated and related controls (0.70±0.06, p<0.001 and 0.82±0.07, p = 0.046, respectively). Analysis of 22 selected SNPs in oxidative stress and DNA damage genes revealed that CYP2A6 L160H was associated with pancreatic cancer. In addition, DNA damage was found to be associated with TNFA −308G>A and ERCC4 R415Q polymorphisms. These results suggest that measurement of DNA damage, as well as select SNPs, may provide an important screening tool to identify individuals at risk for development of pancreatic cancer.Item Effect of oral methyl-t-butyl ether (MTBE) on the male mouse reproductive tract and oxidative stress in liver(Elsevier, 2008) de Peyster, Ann; Rodriguez, Yvonne; Shuto, Rika; Goldberg, Beck; Gonzales, Frank; Pu, Xinzhu; Klaunig, James E.; Department of Pharmacology and Toxicology, IU School of MedicineMTBE is found in water supplies used for drinking and other purposes. These experiments follow up on earlier reports of reproductive tract alterations in male mice exposed orally to MTBE and explored oxidative stress as a mode of action. CD-1 mice were gavaged with 400–2000 mg/kg MTBE on days 1, 3, and 5, injected ip with hCG (2.5 IU/g) on day 6, and necropsied on day 7. No effect was seen in testis histology or testosterone levels. Using a similar dosing protocol, others had initially reported disruption of seminiferous tubules in MTBE–gavaged mice, although later conclusions published were consistent with our findings. Another group had also reported testicular and other reproductive system abnormalities in male BALB/c mice exposed for 28 days to 80–8000 ug/ml MTBE in drinking water. We gave these MTBE concentrations to adult mice for 28 days and juvenile mice for 51 days through PND 77. Evidence of oxidative stress was examined in liver homogenates from the juvenile study using MDA, TEAC and 8OH2hG as endpoints. MTBE exposures at the levels examined indicated no significant changes in the male mouse reproductive tract and no signs of hepatic oxidative stress. This appears to be the first oral MTBE exposure of juvenile animals, and also the first to examine potential for MTBE to cause oxidative stress in vivo using a typical route of human exposure.