- Browse by Author
Browsing by Author "Prior, Thomas W."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Characterization of Prion Disease Associated with a Two-Octapeptide Repeat Insertion(MDPI, 2021-09-08) Brennecke, Nicholas; Cali, Ignazio; Mok, Tze How; Speedy, Helen; Hosszu, Laszlo L.P.; Stehmann, Christiane; Cracco, Laura; Puoti, Gianfranco; Prior, Thomas W.; Cohen, Mark L.; Collins, Steven J.; Mead, Simon; Appleby, Brian S.; Pathology and Laboratory Medicine, School of MedicineGenetic prion disease accounts for 10-15% of prion disease. While insertion of four or more octapeptide repeats are clearly pathogenic, smaller repeat insertions have an unclear pathogenicity. The goal of this case series was to provide an insight into the characteristics of the 2-octapeptide repeat genetic variant and to provide insight into the risk for Creutzfeldt-Jakob disease in asymptomatic carriers. 2-octapeptide repeat insertion prion disease cases were collected from the National Prion Disease Pathology Surveillance Center (US), the National Prion Clinic (UK), and the National Creutzfeldt-Jakob Disease Registry (Australia). Three largescale population genetic databases were queried for the 2-octapeptide repeat insertion allele. Eight cases of 2-octapeptide repeat insertion were identified. The cases were indistinguishable from the sporadic Creutzfeldt-Jakob cases of the same molecular subtype. Western blot characterization of the prion protein in the absence of enzymatic digestion with proteinase K revealed that 2-octapeptide repeat insertion and sporadic Creutzfeldt-Jakob disease have distinct prion protein profiles. Interrogation of large-scale population datasets suggested the variant is of very low penetrance. The 2-octapeptide repeat insertion is at most a low-risk genetic variant. Predictive genetic testing for asymptomatic blood relatives is not likely to be justified given the low risk.Item Characterization of Reference Materials for Spinal Muscular Atrophy Genetic Testing: A Genetic Testing Reference Materials Coordination Program Collaborative Project(Elsevier, 2021) Prior, Thomas W.; Bayrak-Toydemir, Pinar; Lynnes, Ty C.; Mao, Rong; Metcalf, James D.; Muralidharan, Kasinathan; Iwata-Otsubo, Aiko; Pham, Ha T.; Pratt, Victoria M.; Qureshi, Shumaila; Requesens, Deborah; Shen, Junqing; Vetrini, Francesco; Kalman, Lisa; Medicine, School of MedicineSpinal muscular atrophy (SMA) is an autosomal recessive disorder predominately caused by bi-allelic loss of the SMN1 gene. Increased copies of SMN2, a low functioning nearly identical paralog, are associated with a less severe phenotype. SMA was recently recommended for inclusion in newborn screening. Clinical laboratories must accurately measure SMN1 and SMN2 copy number to identify SMA patients and carriers, and to identify individuals likely to benefit from therapeutic interventions. Having publicly available and appropriately characterized reference materials with various combinations of SMN1 and SMN2 copy number variants is critical to assure accurate SMA clinical testing. To address this need, the CDC-based Genetic Testing Reference Materials Coordination Program, in collaboration with members of the genetic testing community and the Coriell Institute for Medical Research, has characterized 15 SMA reference materials derived from publicly available cell lines. DNA samples were distributed to four volunteer testing laboratories for genotyping using three different methods. The characterized samples had zero to four copies of SMN1 and zero to five copies SMN2. The samples also contained clinically important allele combinations (eg, zero copies SMN1, three copies SMN2), and several had markers indicative of an SMA carrier. These and other reference materials characterized by the Genetic Testing Reference Materials Coordination Program are available from the Coriell Institute and are proposed to support the quality of clinical laboratory testing.