- Browse by Author
Browsing by Author "Peskind, Elaine R."
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Association of cerebrospinal fluid Aβ42 with A2M gene in cognitively normal subjects(Elsevier, 2014-02) Millard, Steven P.; Lutz, Franziska; Li, Ge; Galasko, Douglas R.; Farlow, Martin R.; Quinn, Joseph F.; Kaye, Jeffrey A.; Leverenz, James B.; Tsuang, Debby; Yu, Chang-En; Peskind, Elaine R.; Bekris, Lynn M.; Department of Neurology, IU School of MedicineLow cerebrospinal fluid (CSF) Aβ42 levels correlate with increased brain Aβ deposition in Alzheimer’s disease (AD), which suggests a disruption in the degradation and clearance of Aβ from the brain. In addition, APOE ε4 carriers have lower CSF Aβ42 levels than non-carriers. The hypothesis of this investigation was that CSF Aβ42 levels correlate with regulatory region variation in genes that are biologically associated with degradation or clearance of Aβ from the brain. CSF Aβ42 levels were tested for associations with Aβ degradation and clearance genes and APOE ε4. Twenty-four SNPs located within the 5′ and 3′ regions of 12 genes were analyzed. The study sample consisted of 99 AD patients and 168 cognitively normal control subjects. CSF Aβ42 levels were associated with APOE ε4 status in controls but not in AD patientsItem Genome-wide association study identifies four novel loci associated with Alzheimer's endophenotypes and disease modifiers(Springer Verlag, 2017-05) Deming, Yuetiva; Li, Zeran; Kapoor, Manav; Harari, Oscar; Del-Aguila, Jorge L.; Black, Kathleen; Carrell, David; Cai, Yefei; Fernandez, Maria Victoria; Budde, John; Ma, Shengmei; Saef, Benjamin; Howells, Bill; Huang, Kuanlin; Bertelsen, Sarah; Fagan, Anne M.; Holtzman, David M.; Morris, John C.; Kim, Sungeun; Saykin, Andrew J.; De Jager, Philip L.; Albert, Marilyn; Moghekar, Abhay; O’Brien, Richard; Riemenschneider, Matthias; Petersen, Ronald C.; Blennow, Kaj; Zetterberg, Henrik; Minthon, Lennart; Van Deerlin, Vivianna M.; Lee, Virginia Man-Yee; Shaw, Leslie M.; Trojanowski, John Q.; Schellenberg, Gerard; Haines, Jonathan L.; Mayeux, Richard; Pericak-Vance, Margaret A.; Farrer, Lindsay A.; Peskind, Elaine R.; Li, Ge; Di Narzo, Antonio F.; Alzheimer’s Disease Neuroimaging Initiative (ADGC). The Alzheimer Disease Genetic Consortium (ADGC); Kauwe, John S. K.; Goate, Alison M.; Cruchaga, Carlos; Medicine, School of MedicineMore than 20 genetic loci have been associated with risk for Alzheimer's disease (AD), but reported genome-wide significant loci do not account for all the estimated heritability and provide little information about underlying biological mechanisms. Genetic studies using intermediate quantitative traits such as biomarkers, or endophenotypes, benefit from increased statistical power to identify variants that may not pass the stringent multiple test correction in case-control studies. Endophenotypes also contain additional information helpful for identifying variants and genes associated with other aspects of disease, such as rate of progression or onset, and provide context to interpret the results from genome-wide association studies (GWAS). We conducted GWAS of amyloid beta (Aβ42), tau, and phosphorylated tau (ptau181) levels in cerebrospinal fluid (CSF) from 3146 participants across nine studies to identify novel variants associated with AD. Five genome-wide significant loci (two novel) were associated with ptau181, including loci that have also been associated with AD risk or brain-related phenotypes. Two novel loci associated with Aβ42 near GLIS1 on 1p32.3 (β = -0.059, P = 2.08 × 10-8) and within SERPINB1 on 6p25 (β = -0.025, P = 1.72 × 10-8) were also associated with AD risk (GLIS1: OR = 1.105, P = 3.43 × 10-2), disease progression (GLIS1: β = 0.277, P = 1.92 × 10-2), and age at onset (SERPINB1: β = 0.043, P = 4.62 × 10-3). Bioinformatics indicate that the intronic SERPINB1 variant (rs316341) affects expression of SERPINB1 in various tissues, including the hippocampus, suggesting that SERPINB1 influences AD through an Aβ-associated mechanism. Analyses of known AD risk loci suggest CLU and FERMT2 may influence CSF Aβ42 (P = 0.001 and P = 0.009, respectively) and the INPP5D locus may affect ptau181 levels (P = 0.009); larger studies are necessary to verify these results. Together the findings from this study can be used to inform future AD studies.Item National Institute of Neurological Disorders and Stroke Consensus Diagnostic Criteria for Traumatic Encephalopathy Syndrome(Wolters Kluwer, 2021) Katz, Douglas I.; Bernick, Charles; Dodick, David W.; Mez, Jesse; Mariani, Megan L.; Adler, Charles H.; Alosco, Michael L.; Balcer, Laura J.; Banks, Sarah J.; Barr, William B.; Brody, David L.; Cantu, Robert C.; Dams-O’Connor, Kristen; Geda, Yonas E.; Jordan, Barry D.; McAllister, Thomas W.; Peskind, Elaine R.; Petersen, Ronald C.; Wethe, Jennifer V.; Zafonte, Ross D.; Foley, Éimear M.; Babcock, Debra J.; Koroshetz, Walter J.; Tripodis, Yorghos; McKee, Ann C.; Shenton, Martha E.; Cummings, Jeffrey L.; Reiman, Eric M.; Stern, Robert A.; Psychiatry, School of MedicineObjective: To develop evidence-informed, expert consensus research diagnostic criteria for traumatic encephalopathy syndrome (TES), the clinical disorder associated with neuropathologically diagnosed chronic traumatic encephalopathy (CTE). Methods: A panel of 20 expert clinician-scientists in neurology, neuropsychology, psychiatry, neurosurgery, and physical medicine and rehabilitation, from 11 academic institutions, participated in a modified Delphi procedure to achieve consensus, initiated at the First National Institute of Neurological Disorders and Stroke Consensus Workshop to Define the Diagnostic Criteria for TES, April, 2019. Before consensus, panelists reviewed evidence from all published cases of CTE with neuropathologic confirmation, and they examined the predictive validity data on clinical features in relation to CTE pathology from a large clinicopathologic study (n = 298). Results: Consensus was achieved in 4 rounds of the Delphi procedure. Diagnosis of TES requires (1) substantial exposure to repetitive head impacts (RHIs) from contact sports, military service, or other causes; (2) core clinical features of cognitive impairment (in episodic memory and/or executive functioning) and/or neurobehavioral dysregulation; (3) a progressive course; and (4) that the clinical features are not fully accounted for by any other neurologic, psychiatric, or medical conditions. For those meeting criteria for TES, functional dependence is graded on 5 levels, ranging from independent to severe dementia. A provisional level of certainty for CTE pathology is determined based on specific RHI exposure thresholds, core clinical features, functional status, and additional supportive features, including delayed onset, motor signs, and psychiatric features. Conclusions: New consensus diagnostic criteria for TES were developed with a primary goal of facilitating future CTE research. These criteria will be revised as updated clinical and pathologic information and in vivo biomarkers become available.