- Browse by Author
Browsing by Author "Pecoraro, Anthony R."
Now showing 1 - 6 of 6
Results Per Page
Sort Options
Item A hydrogen-sulfide derivative of mesalamine reduces the severity of intestinal and lung injury in necrotizing enterocolitis through endothelial nitric oxide synthase(American Physiological Society, 2022-10-01) Hosfield, Brian D.; Hunter, Chelsea E.; Li, Hongge; Drucker, Natalie A.; Pecoraro, Anthony R.; Manohar, Krishna; Shelley, W. Christopher; Markel, Troy A.; Surgery, School of MedicineNecrotizing enterocolitis (NEC) remains a devastating disease that affects preterm infants. Hydrogen sulfide (H2S) donors have been shown to reduce the severity of NEC, but the optimal compound has yet to be identified. We hypothesized that oral H2S-Mesalamine (ATB-429) would improve outcomes in experimental NEC, and its benefits would be dependent on endothelial nitric oxide synthase (eNOS) pathways. NEC was induced in 5-day-old wild-type (WT) and eNOS knockout (eNOSKO) pups by formula feeding and stress. Four groups were studied in both WT and eNOSKO mice: 1) breastfed controls, 2) NEC, 3) NEC + 50 mg/kg mesalamine, and 4) NEC + 130 mg/kg ATB-429. Mesalamine and ATB-429 doses were equimolar. Pups were monitored for sickness scores and perfusion to the gut was measured by Laser Doppler Imaging (LDI). After euthanasia of the pups, intestine and lung were hematoxylin and eosin-stained and scored for injury in a blind fashion. TLR4 expression was quantified by Western blot and IL-6 expression by ELISA. P < 0.05 was significant. Both WT and eNOSKO breastfed controls underwent normal development and demonstrated milder intestinal and pulmonary injury compared with NEC groups. For the WT groups, ATB-429 significantly improved weight gain, reduced clinical sickness score, and improved perfusion compared with the NEC group. In addition, WT ATB-429 pups had a significantly milder intestinal and pulmonary histologic injury when compared with NEC. ATB-429 attenuated the increase in TLR4 and IL-6 expression in the intestine. When the experiment was repeated in eNOSKO pups, ATB-429 offered no benefit in weight gain, sickness scores, perfusion, intestinal injury, pulmonary injury, or decreasing intestinal inflammatory markers. An H2S derivative of mesalamine improves outcomes in experimental NEC. Protective effects appear to be mediated through eNOS. Further research is warranted to explore whether ATB-429 may be an effective oral therapy to combat NEC.Item Angiogenesis: A Cellular Response to Traumatic Injury(Wolters Kluwer, 2020) Pecoraro, Anthony R.; Hosfield, Brian D.; Li, Hongge; Shelley, W. Christopher; Markel, Troy A.; Surgery, School of MedicineThe development of new vasculature plays a significant role in a number of chronic disease states, including neoplasm growth, peripheral arterial disease, and coronary artery disease, among many others. Traumatic injury and hemorrhage, however, is an immediate, often dramatic pathophysiologic insult which can also necessitate neovascularization to promote healing. Traditional understanding of angiogenesis involved resident endothelial cells branching outward from localized niches in the periphery. Additionally, there are a small number of circulating endothelial progenitor cells which participate directly in the process of neovessel formation. The bone marrow stores a relatively small number of so-called pro-angiogenic hematopoietic progenitor cells (PACs) – that is, progenitor cells of a hematopoietic potential that differentiate into key structural cells and stimulate or otherwise support local cell growth/differentiation at the site of angiogenesis. Following injury, a number of cytokines and intercellular processes are activated or modulated to promote development of new vasculature. These processes initiate and maintain a robust response to vascular insult, allowing new vessels to canalize and anastomose and provide timely oxygen delivering to healing tissue. Ultimately as we better understand the key players in the process of angiogenesis we can look to develop novel techniques to promote healing following injury.Item The Assessment of Fecal Volatile Organic Compounds in Healthy Infants: Electronic Nose Device Predicts Patient Demographics and Microbial Enterotype(Elsevier, 2020-10) Hosfield, Brian D.; Pecoraro, Anthony R.; Baxter, Nielson T.; Hawkins, Troy B.; Markel, Troy A.; Surgery, School of MedicineBackground: The assessment of fecal volatile organic compounds (VOCs) has emerged as a noninvasive biomarker in many different pathologies. Before assessing whether VOCs can be used to diagnose intestinal diseases, including necrotizing enterocolitis (NEC), it is necessary to measure the impact of variable infant demographic factors on VOC signals. Materials and methods: Stool samples were collected from term infants at four hospitals in a large metropolitan area. Samples were heated, and fecal VOCs assessed by the Cyranose 320 Electronic Nose. Twenty-eight sensors were combined into an overall smellprint and were also assessed individually. 16s rRNA gene sequencing was used to categorize infant microbiomes. Smellprints were correlated to feeding type (formula versus breastmilk), sex, hospital of birth, and microbial enterotype. Overall smellprints were assessed by PERMANOVA with Euclidean distances, and individual sensors from each smellprint were assessed by Mann-Whitney U-tests. P < 0.05 was significant. Results: Overall smellprints were significantly different according to diet. Individual sensors were significantly different according to sex and hospital of birth, but overall smellprints were not significantly different. Using a decision tree model, two individual sensors could reliably predict microbial enterotype. Conclusions: Assessment of fecal VOCs with an electronic nose is impacted by several demographic characteristics of infants and can be used to predict microbiome composition. Further studies are needed to design appropriate algorithms that are able to predict NEC based on fecal VOC profiles.Item The Assessment of Microbiome Changes and Fecal Volatile Organic Compounds during Experimental Necrotizing Enterocolitis(Elsevier, 2021) Hosfield, Brian D.; Drucker, Natalie A.; Pecoraro, Anthony R.; Shelley, William C.; Li, Hongge; Baxter, Nielson T.; Hawkins, Troy B.; Markel, Troy A.; Surgery, School of MedicineIntroduction: Necrotizing enterocolitis (NEC) remains a devastating disease that affects the gastrointestinal tract of the preterm infant. Volatile organic compounds (VOCs) have emerged as a non-invasive biomarker in many diseases. We hypothesized that fecal VOC profiles would be significantly different between control and NEC pups in a NEC mouse model. Methods: Experimental NEC was induced in five-day-old mice. Breastfed and formula-fed control groups were also studied. After four days, pups were euthanized and intestines were H&E stained and blindly scored. Stool microbiome analysis was performed via 16S rRNA sequencing. VOC analysis was assessed by the CyranoseⓇ 320 eNose device and p<0.05 was significant. Results: NEC pups had severe intestinal injury when compared to controls. Microbiome analysis showed that both control groups had significantly higher microbial diversity and relative abundance of Lactobacillus than NEC, and lower relative abundance of Escherichia. Fecal VOC profile for NEC pups was significantly different from controls. Conclusions: Experimental NEC was associated with intestinal dysbiosis. Fecal VOC analysis by the CyranoseⓇ 320 eNose device can discriminate NEC pups from both breastfed and formula-fed controls. Further research is warranted to establish whether fecal VOCs can be used as a biomarker or predictive algorithm to diagnose NEC.Item Hydrogen Sulfide Improves Outcomes in a Murine Model of Necrotizing Enterocolitis via the Cys440 Residue on Endothelial Nitric Oxide Synthase(Elsevier, 2023) Hunter, Chelsea E.; Mesfin, Fikir M.; Manohar, Krishna; Liu, Jianyun; Shelley, W. Christopher; Brokaw, John P.; Pecoraro, Anthony R.; Hosfield, Brian D.; Markel, Troy A.; Surgery, School of MedicineBackground: Hydrogen sulfide (H2S) has been shown to improve outcomes in a murine model of necrotizing enterocolitis (NEC). There is evidence in humans that H2S relies on endothelial nitric oxide synthase (eNOS) to exert its protective effects, potentially through the persulfidation of eNOS at the Cysteine 443 residue. We obtained a novel mouse strain with a mutation at this residue (eNOSC440G) and hypothesized that this locus would be critical for GYY4137 (an H2S donor) to exert its protective effects. Methods: Necrotizing enterocolitis was induced in 5-day old wild type (WT) and eNOSC440G mice using intermittent exposure to hypoxia and hypothermia in addition to gavage formula feeds. On postnatal day 9, mice were humanely euthanized. Data collected included daily weights, clinical sickness scores, histologic lung injury, intestinal injury (macroscopically and histologically), and intestinal perfusion. During the NEC model, pups received daily intraperitoneal injections of either GYY4137 (50 mg/kg) or PBS (vehicle). Data were tested for normality and compared using t-test or Mann-Whitney, and a p-value <0.05 was considered significant. Results: In WT mice, the administration of GYY4137 significantly improved clinical sickness scores, attenuated intestinal and lung injury, and improved mesenteric perfusion compared to vehicle (p < 0.05). In eNOSC440G mice, the treatment and vehicle groups had similar clinical sickness scores, intestinal and lung injury scores, and intestinal perfusion. Conclusions: GYY4137 administration improves clinical outcomes, attenuates intestinal and lung injury, and improves perfusion in a murine model of necrotizing enterocolitis. The beneficial effects of GYY4137 are dependent on the Cys440 residue of eNOS.Item It’s All in the Milk: Chondroitin Sulfate as Potential Preventative Therapy for Necrotizing Enterocolitis(Springer Nature, 2021) Knowles, Thomas A.; Hosfield, Brian D.; Pecoraro, Anthony R.; Li, Hongge; Shelley, W. Christopher; Markel, Troy A.; Surgery, School of MedicineNecrotizing enterocolitis (NEC) is a devastating condition affecting up to 5% of neonatal intensive care unit (NICU) admissions. Risk factors include preterm delivery, low birth weight, and antibiotic use. The pathogenesis is characterized by a combination of intestinal ischemia, necrosis of the bowel, reperfusion injury, and sepsis typically resulting in surgical resection of afflicted bowel. Targeted medical therapy remains elusive. Chondroitin sulfate (CS) holds the potential to prevent the onset of NEC through its anti-inflammatory properties and protective effect on the gut microbiome. The purpose of this review is to outline the many properties of CS to highlight its potential use in high-risk infants and attenuate the severity of NEC. The purpose of this review is to (1) discuss the interaction of CS with the infant microbiome, (2) review the anti-inflammatory properties of CS, and (3) postulate on the potential role of CS in preventing NEC. IMPACT: NEC is a costly medical burden in the United States. Breast milk is the best preventative measure for NEC, but not all infants in the NICU have access to breast milk. Novel therapies and diagnostic tools are needed for NEC. CS may be a potential therapy for NEC due to its potent anti-inflammatory properties. CS could be added to the formula in an attempt to mitigate breast milk disparities.