- Browse by Author
Browsing by Author "Oxford, Gerry S."
Now showing 1 - 10 of 12
Results Per Page
Sort Options
Item Activin acutely sensitizes dorsal root ganglion neurons and induces hyperalgesia via PKC-mediated potentiation of transient receptor potential vanilloid I(Society for Neuroscience, 2007-12-12) Zhu, Weiguo; Xu, Pin; Cuascut, Fernando X.; Hall, Alison K.; Oxford, Gerry S.; Pharmacology and Toxicology, School of MedicinePain hypersensitivity is a cardinal sign of tissue damage, but how molecules from peripheral tissues affect sensory neuron physiology is incompletely understood. Previous studies have shown that activin A increases after peripheral injury and is sufficient to induce acute nociceptive behavior and increase pain peptides in sensory ganglia. This study was designed to test the possibility that the enhanced nociceptive responsiveness associated with activin involved sensitization of transient receptor potential vanilloid I (TRPV1) in primary sensory neurons. Activin receptors were found widely distributed among adult sensory neurons, including those that also express the capsaicin receptor. Whole-cell patch-clamp recording from sensory neurons showed that activin acutely sensitized capsaicin responses and depended on activin receptor kinase activity. Pharmacological studies revealed that the activin sensitization of capsaicin responses required PKCepsilon signaling, but not PI3K (phosphoinositide 3-kinase), ERK (extracellular signal-regulated protein kinase), PKA, PKCalpha/beta, or Src. Furthermore, activin administration caused acute thermal hyperalgesia in wild-type mice, but not in TRPV1-null mice. These data suggest that activin signals through its own receptor, involves PKCepsilon signaling to sensitize the TRPV1 channel, and contributes to acute thermal hyperalgesia.Item CaMKII regulation of astrocytic glutamate uptake(2016-05-19) Chawla, Aarti R.; Hudmon, Andy; Cummins, Theodore; Oxford, Gerry S.; Chen, Jinhui; Hoang, QuyenGlutamate clearance by astrocytes is an essential part of physiological excitatory neurotransmission. Failure to adapt or maintain low levels of glutamate in the central nervous system is associated with multiple acute and chronic neurodegenerative diseases. The primary excitatory amino acid transporters (EAATs) in human astrocytes are EAAT1 and EAAT2 (GLAST and GLT-1 respectively in rodents). While the inhibition of a ubiquitously-expressed serine/threonine protein kinase, the calcium/calmodulindependent kinase (CaMKII) results in diminished glutamate uptake in cultured primary rodent astrocytes, the molecular mechanism underlying this regulation is unknown. In order to delineate this mechanism, we use a heterologous expression model to explore CaMKII regulation of EAAT1 and EAAT2. In transiently transfected HEK293T cells, pharmacological inhibition of CaMKII and overexpression of a dominant-negative version of CaMKII (Asp136Asn) reduces [3H]-glutamate uptake by EAAT1, without altering EAAT2 mediated glutamate uptake. Surprisingly, overexpression of a constitutively active autophosphorylation mutant (Thr287Asp) to increase autonomous CaMKII activity and a mutant incapable of autophosphorylation (Thr287Val) had no effect on either EAAT1 or EAAT2 mediated glutamate uptake. Pulldown of FLAGtagged glutamate transporters suggests CaMKII does not interact with EAAT1 or EAAT2. SPOTS peptide arrays and recombinant GST-fusion proteins of the intracellular N- and C-termini of EAAT1 identified two potential phosphorylation sites at residues Thr26 and Thr37 in the N-terminus. Introducing an Ala (a non-phospho mimetic) but not an Asp (phosphomimetic) at Thr37 diminished EAAT1-mediated glutamate uptake, suggesting that the phosphorylation state of this residue is important for constitutive EAAT1 function. In sum, this is the first report of a glutamate transporter being identified as a direct CaMKII substrate. These findings indicate that CaMKII signaling is a critical driver of homeostatic glutamate uptake by EAAT1. Aberrations in basal CaMKII activity disrupt glutamate uptake, which can perpetuate glutamate-mediated excitotoxicity and result in cellular death.Item Cardiac sodium channel palmitoylation regulates channel function and cardiac excitability with implications for arrhythmia generation(2016-12-09) Pei, Zifan; Cummins, Theodore R.; Oxford, Gerry S.; Hudmon, Andy; Rubart-von der Lohe, Michael; Sheets, Patrick L.The cardiac voltage-gated sodium channels (Nav1.5) play a specific and critical role in regulating cardiac electrical activity by initiating and propagating action potentials in the heart. The association between Nav1.5 dysfunctions and generation of various types of cardiac arrhythmia disease, including long-QT3 and Brugada syndrome, is well established. Many types of post-translational modifications have been shown to regulate Nav1.5 biophysical properties, including phosphorylation, glycosylation and ubiquitination. However, our understanding about how post-translational lipid modification affects sodium channel function and cellular excitability, is still lacking. The goal of this dissertation is to characterize Nav1.5 palmitoylation, one of the most common post-translational lipid modification and its role in regulating Nav1.5 function and cardiac excitability. In our studies, three lines of biochemistry evidence were shown to confirm Nav1.5 palmitoylation in both native expression background and heterologous expression system. Moreover, palmitoylation of Nav1.5 can be bidirectionally regulated using 2-Br-palmitate and palmitic acid. Our results also demonstrated that enhanced palmitoylation in both cardiomyocytes and HEK293 cells increases sodium channel availability and late sodium current activity, leading to enhanced cardiac excitability and prolonged action potential duration. In contrast, blocking palmitoylation by 2-Br-palmitiate increases closed-state channel inactivation and reduces myocyte excitability. Our computer simulation results confirmed that the observed modification in Nav1.5 gating properties by protein palmitoylation are adequate for the alterations in cardiac excitability. Mutations of potential palmitoylation sites predicted by CSS-Palm bioinformatics tool were introduced into wild-type Nav1.5 constructs using site-directed mutagenesis. Further studies revealed four cysteines (C981, C1176, C1178, C1179) as possible Nav1.5 palmitoylation sites. In particular, a mutation of one of these sites(C981) is associated with cardiac arrhythmia disease. Cysteine to phenylalanine mutation at this site largely enhances of channel closed-state inactivation and ablates sensitivity to depalmitoylation. Therefore, C981 might be the most important site that regulates Nav1.5 palmitoylation. In summary, this dissertation research identified novel post-translational modification on Nav1.5 and revealed important details behind this process. Our data provides new insights on how post-translational lipid modification alters cardiomyocyte excitability and its potential role in arrhythmogenesis.Item Effects of omega-3 fatty acids on rodent models of bipolar disorder and alcoholism(2010-07-20T15:16:10Z) Case, Natalie J.; Oxford, Gerry S.; Niculescu, Alexander B.; Czachowski, Cristine L.Our laboratory has previously identified the clock gene D-box Binding Protein (DBP) as a candidate gene for bipolar disorder and alcoholism using a Convergent Functional Genomics (CFG) approach. In subsequent work, we established mice with a homozygous deletion of DBP as a stress-reactive genetic animal model of bipolar disorder and co-morbid alcoholism. In the present study, we found that the omega-3 fatty acid, DHA, may have mood stabilizing capabilities in stressed DBP knockout mice, and reduces alcohol consumption in these mice as well as in the alcohol preferring (P) rats. Given their potential health benefits and their relative lack of negative side-effects, omega-3 fatty acids may become an important supplement for bipolar patients and co-morbid alcoholics, a potential that warrants continued research.Item Electrophysiological and Pharmacological Properties of the Neuronal Voltage-gated Sodium Channel Subtype Nav1.7(2007-12) Sheets, Patrick L.; Cummins, Theodore R.; Nicol, Grant D.; Oxford, Gerry S.; Vasko, Michael R.; Schild, John H.Voltage-gated sodium channels (VGSCs) are transmembrane proteins responsible for the initiation of action potentials in excitable tissues by selectively allowing Na+ to flow through the cell membrane. VGSC subtype Nav1.7 is highly expressed in nociceptive (pain-sensing) neurons. It has recently been shown that individuals lacking the Nav1.7 subtype do not experience pain but otherwise function normally. In addition, dysfunction of Nav1.7 caused by point mutations in the channel is involved in two inherited pain disorders, primary erythromelalgia (PE) and paroxysmal extreme pain disorder (PEPD). This indicates Nav1.7 is a very important component in nociception. The aims of this dissertation were to 1) investigate if the antipsychotic drug, trifluoperazine (TFP), could modulate Nav1.7 current; 2) examine changes in Nav1.7 properties produced by the PE mutation N395K including sensitivity to the local anesthetic (LA), lidocaine; and 3) determine how different inactivated conformations of Nav1.7 affect lidocaine inhibition on the channel using PEPD mutations (I1461T and T1464I) that alter transitions between the different inactivated configurations of Nav1.7. Standard whole-cell electrophysiology was used to determine electrophysiological and pharmacological changes in WT and mutant sodium currents. Results from this dissertation demonstrate 1) TFP inhibits Nav1.7 channels through the LA interaction site; 2) the N395K mutation alters electrophysiological properties of Nav1.7 and decreases channel sensitivity to the local anesthetic lidocaine; and 3) lidocaine stabilizes Nav1.7 in a configuration that decreases transition to the slow inactivated state of the channel. Overall, this dissertation answers important questions regarding the pharmacology of Nav1.7 and provides insight into the changes in Nav1.7 channel properties caused by point mutations that may contribute to abnormal pain sensations. The results of this dissertation on the function and pharmacology of the Nav1.7 channel are crucial to the understanding of pain pathophysiology and will provide insight for the advancement of pain management therapies.Item Eludicating triggers and neurochemical circuits underlying hot flashes in an ovariectomy model of menopause(2016-02-26) Federici, Lauren Michele; Shekhar, Anantha; Goodlett, Charles; Johnson, Philip L.; Oxford, Gerry S.; Rusyniak, Daniel E.Menopausal symptoms, primarily hot flashes, are a pressing clinical problem for both naturally menopausal women and breast and ovarian cancer patients, with a high societal and personal cost. Hot flashes are poorly understood, and animal modeling has been scarce, which has substantially hindered the development of non-hormonal treatments. An emerging factor in the hot flash experience is the role of anxiety and stress-related stimuli, which have repeatedly been shown to influence the bother, frequency, and severity of hot flashes. Causal relationships are difficult to determine in a clinical setting, and the use of animal models offers the ability to elucidate causality and mechanisms. The first part of this work details the development and validation of novel animal models of hot flashes using clinically relevant triggers (i.e., compounds or stimuli that cause hot flashes in clinical settings), which also increase anxiety symptoms. These studies revealed that these triggers elicited strong (7-9 °C) and rapid hot flash-associated increases in tail skin temperature in rats. In a surgical ovariectomy rat model of menopause, which typically exhibit anxiety-like behavior, hot flash provocation revealed an ovariectomy-dependent vulnerability, which was attenuated by estrogen replacement in tested models. An examination of the neural circuitry in response to the most robust flushing compound revealed increased cellular activity in key thermoregulatory and emotionally relevant areas. The orexin neuropeptide system was hyperactive and presented as a novel target; pretreatment with selective and dual orexin receptor antagonists significantly diminished or eliminated, respectively, the response to a hot flash provocation in ovariectomized rats. The insertion/deletion polymorphism of the serotonin transporter has been linked to increased anxiety-associated traits in humans, and subsequent studies prolonged hot flashes in SERT+/- rats, which also caused hot flashes in highly symptomatic women. These studies indicate the orexin system may be a novel non-hormonal treatment target, and future studies will determine the therapeutic importance of orexin receptor antagonists for menopausal symptoms.Item Environmental Toxin Acrolein Alters Levels of Endogenous Lipids, Including TRP Agonists: A Potential Mechanism for Headache Driven by TRPA1 Activation(Elsevier, 2017-01) Leishman, Emma; Kunkler, Phillip E.; Manchanda, Meera; Sangani, Kishan; Stuart, Jordyn M.; Oxford, Gerry S.; Hurley, Joyce H.; Bradshaw, Heather B.; Medicine, School of MedicineExposure to airborne toxins can trigger headaches, but the mechanisms are not well understood. Some environmental toxins, such as acrolein, activate transient receptor potential ankyrin 1 (TRPA1), a receptor involved in pain sensation that is highly expressed in the trigeminovascular system. It has been shown in rat models that repeated exposure to acrolein induces trigeminovascular sensitization to both TRPA1 and TRP vanilloid 1 (TRPV1) agonists, a phenomenon linked to headache. In this study, we test the hypothesis that the sensitization of trigeminovascular responses in rats after acrolein exposure via inhalation is associated with changes in levels of endogenous lipids, including TRPV1 agonists, in the trigeminal ganglia, trigeminal nucleus, and cerebellum. Lipidomics analysis of 80 lipids was performed on each tissue after acute acrolein, chronic acrolein, or room air control. Both acute and chronic acrolein exposure drove widespread alterations in lipid levels. After chronic acrolein exposure, levels of all 6 N-acyl ethanolamines in the screening library, including the endogenous cannabinoid and TRPV1 agonist, N-arachidonoyl ethanolamine, were elevated in trigeminal tissue and in the cerebellum. This increase in TRPV1 ligands by acrolein exposure may indicate further downstream signaling, in that we also show here that a combination of these TRPV1 endogenous agonists increases the potency of the individual ligands in TRPV1-HEK cells. In addition to these TRPV1 agonists, 3 TRPV3 antagonists, 4 TRPV4 agonists, and 25 orphan lipids were up and down regulated after acrolein exposure. These data support the hypothesis that lipid signaling may represent a mechanism by which repeated exposure to the TRPA1 agonist and environmental toxin, acrolein, drives trigeminovascular sensitization.Item Functional contributions of a sex-specific population of myelinated aortic baroreceptors in rat and their changes following ovariectomy(2014) Santa Cruz Chavez, Grace C.; Schild, John H.; Nicol, Grant D.; Oxford, Gerry S.; Rusyniak, Daniel E.; Vasko, Michael R.Gender differences in the basal function of autonomic cardiovascular control are well documented. Consistent baroreflex (BRx) studies suggest that women have higher tonic parasympathetic cardiac activation compared to men. Later in life and concomitant with menopause, a significant reduction in the capacity of the BRx in females increases their risk to develop hypertension, even exceeding that of age-matched males. Loss of sex hormones is but one factor. In female rats, we previously identified a distinct myelinated baroreceptor (BR) neuronal phenotype termed Ah-type, which exhibits functional dynamics and ionic currents that are a mix of those observed in barosensory afferents functionally identified as myelinated A-type or unmyelinated C-type. Interestingly, Ah-type afferents constitute nearly 50% of the total population of myelinated aortic BR in female but less than 2% in male rat. We hypothesized that an afferent basis for sexual dimorphism in BRx function exists. Specifically, we investigated the potential functional impact Ah-type afferents have upon the aortic BRx and what changes, if any, loss of sex hormones through ovariectomy brings upon such functions. We assessed electrophysiological and reflexogenic differences associated with the left aortic depressor nerve (ADN) from adult male, female, and ovariectomized female (OVX) Sprague-Dawley rats. Our results revealed sexually dimorphic conduction velocity (CV) profiles. A distinct, slower myelinated fiber volley was apparent in compound action potential (CAP) recordings from female aortic BR fibers, with an amplitude and CV not observed in males. Subsequent BRx studies demonstrated that females exhibited significantly greater BRx responses compared to males at myelinated-specific intensities. Ovariectomy induced an increased overall temporal dispersion in the CAP of OVX females that may have contributed to their attenuated BRx responses. Interestingly, the most significant changes in depressor dynamics occurred at electrical thresholds and frequencies most closely aligned with Ah-type BR fibers. Collectively, we provide evidence that, in females, two anatomically distinct myelinated afferent pathways contribute to the integrated BRx function, whereas in males only one exists. These functional differences may partly account for the enhanced control of blood pressure in females. Furthermore, Ah-type afferents may provide a neuromodulatory pathway uniquely associated with the hormonal regulation of BRx function.Item Involvement of Collapsin Response Mediator Protein 2 in Posttraumatic Sprouting in Acquired Epilepsy(2014) Wilson, Sarah Marie; Oxford, Gerry S.; Khanna, Rajesh; Jen, Joanna; Xu, Zao C.; Jin, Xiao-MingPosttraumatic epilepsy, the development of temporal lobe epilepsy (TLE) following traumatic brain injury, accounts for 20% of symptomatic epilepsy. Reorganization of mossy fibers within the hippocampus is a common pathological finding of TLE. Normal mossy fibers project into the CA3 region of the hippocampus where they form synapses with pyramidal cells. During TLE, mossy fibers are observed to innervate the inner molecular layer where they synapse onto the dendrites of other dentate granule cells, leading to the formation of recurrent excitatory circuits. To date, the molecular mechanisms contributing to mossy fiber sprouting are relatively unknown. Recent focus has centered on the involvement of tropomycin-related kinase receptor B (TrkB), which culminates in glycogen synthase kinase 3β (GSK3β) inactivation. As the neurite outgrowth promoting collapsin response mediator protein 2 (CRMP2) is rendered inactive by GSK3β phosphorylation, events leading to inactivation of GSK3β should therefore increase CRMP2 activity. To determine the involvement of CRMP2 in mossy fiber sprouting, I developed a novel tool ((S)-LCM) for selectively targeting the ability of CRMP2 to enhance tubulin polymerization. Using (S)-LCM, it was demonstrated that increased neurite outgrowth following GSK3β inactivation is CRMP2 dependent. Importantly, TBI led to a decrease in GSK3β-phosphorylated CRMP2 within 24 hours which was secondary to the inactivation of GSK3β. The loss of GSK3β-phosphorylated CRMP2 was maintained even at 4 weeks post-injury, despite the transience of GSK3β-inactivation. Based on previous work, it was hypothesized that activity-dependent mechanisms may be responsible for the sustained loss of CRMP2 phosphorylation. Activity-dependent regulation of GSK3β-phosphorylated CRMP2 levels was observed that was attributed to a loss of priming by cyclin dependent kinase 5 (CDK5), which is required for subsequent phosphorylation by GSK3β. It was confirmed that the loss of GSK3β-phosphorylated CRMP2 at 4 weeks post-injury was likely due to decreased phosphorylation by CDK5. As TBI resulted in a sustained increase in CRMP2 activity, I attempted to prevent mossy fiber sprouting by targeting CRMP2 in vivo following TBI. While (S)-LCM treatment dramatically reduced mossy fiber sprouting following TBI, it did not differ significantly from vehicle-treated animals. Therefore, the necessity of CRMP2 in mossy fiber sprouting following TBI remains unknown.Item Reconstitution of mouse inner ear sensory development from pluripotent stem cells(2014-01) Koehler, Karl R.; Oxford, Gerry S.; Cummins, Theodore R.; Hashino, Eri; Meyer, Jason S.; Zhang, XinThe inner ear contains specialized sensory epithelia that detect head movements, gravity and sound. Hearing loss and imbalance are primarily caused by degeneration of the mechanosensitive hair cells in sensory epithelia or the sensory neurons that connect the inner ear to the brain. The controlled derivation of inner ear sensory epithelia and neurons from pluripotent stem cells will be essential for generating in vitro models of inner ear disorders or developing cell-based therapies. Despite some recent success in deriving hair cells from mouse embryonic stem (ES) cells, it is currently unclear how to derive inner ear sensory cells in a fully defined and reproducible manner. Progress has likely been hindered by what is known about induction of the nonneural and preplacodal ectoderm, two critical precursors during inner ear development. The studies presented here report the step-wise differentiation of inner ear sensory epithelia from mouse ES cells in three-dimensional culture. We show that nonneural, preplacodal and pre-otic epithelia can be generated from ES cell aggregates by precise temporal control of BMP, TGFβ and FGF signaling, mimicking in vivo development. Later, in a self-guided process, vesicles containing supporting cells emerge from the presumptive otic epithelium and give rise to hair cells with stereocilia bundles and kinocilium. Remarkably, the vesicles developed into large cysts with sensory epithelia reminiscent of vestibular sense organs (i.e. the utricle, saccule and crista), which sense head movements and gravity in the animal. We have designated these stem cell-derived structures inner ear organoids. In addition, we discovered that sensory-like neurons develop alongside the organoids and form putative synapses with hair cells in a similar fashion to the hair cell-to-neuron circuit that forms in the developing embryo. Our data thus establish a novel in vitro model of inner ear organogenesis that can be used to gain deeper insight into inner ear development and disorder.