- Browse by Author
Browsing by Author "Oudit, Gavin Y."
Now showing 1 - 9 of 9
Results Per Page
Sort Options
Item ACE2 Deficiency Worsens Epicardial Adipose Tissue Inflammation and Cardiac Dysfunction in Response to Diet-Induced Obesity(American Diabetes Association, 2016-01) Patel, Vaibhav B.; Mori, Jun; McLean, Brent A.; Basu, Ratnadeep; Das, Subhash K.; Ramprasath, Tharmarajan; Parajuli, Nirmal; Penninger, Josef M.; Grant, Maria B.; Lopaschuk, Gary D.; Oudit, Gavin Y.; Department of Ophthalmology, IU School of MedicineObesity is increasing in prevalence and is strongly associated with metabolic and cardiovascular disorders. The renin-angiotensin system (RAS) has emerged as a key pathogenic mechanism for these disorders; angiotensin (Ang)-converting enzyme 2 (ACE2) negatively regulates RAS by metabolizing Ang II into Ang 1-7. We studied the role of ACE2 in obesity-mediated cardiac dysfunction. ACE2 null (ACE2KO) and wild-type (WT) mice were fed a high-fat diet (HFD) or a control diet and studied at 6 months of age. Loss of ACE2 resulted in decreased weight gain but increased glucose intolerance, epicardial adipose tissue (EAT) inflammation, and polarization of macrophages into a proinflammatory phenotype in response to HFD. Similarly, human EAT in patients with obesity and heart failure displayed a proinflammatory macrophage phenotype. Exacerbated EAT inflammation in ACE2KO-HFD mice was associated with decreased myocardial adiponectin, decreased phosphorylation of AMPK, increased cardiac steatosis and lipotoxicity, and myocardial insulin resistance, which worsened heart function. Ang 1-7 (24 µg/kg/h) administered to ACE2KO-HFD mice resulted in ameliorated EAT inflammation and reduced cardiac steatosis and lipotoxicity, resulting in normalization of heart failure. In conclusion, ACE2 plays a novel role in heart disease associated with obesity wherein ACE2 negatively regulates obesity-induced EAT inflammation and cardiac insulin resistance.Item Adeno-Associated Virus Overexpression of Angiotensin-Converting Enzyme-2 Reverses Diabetic Retinopathy in Type 1 Diabetes in Mice(Elsevier, 2016) Dominguez, James M., II; Hu, Ping; Caballero, Sergio; Moldovan, Leni; Verma, Amrisha; Oudit, Gavin Y.; Li, Qiuhong; Grant, Maria B.; Department of Ophthalmology, School of MedicineAngiotensin-converting enzyme (ACE)-2 is the primary enzyme of the vasoprotective axis of the renin angiotensin system that regulates the classic renin angiotensin system axis. We aimed to determine whether local retinal overexpression of adenoassociated virus (AAV)-ACE2 prevents or reverses diabetic retinopathy. Green fluorescent protein (GFP)-chimeric mice were generated to distinguish resident (retinal) from infiltrating bone marrow-derived inflammatory cells and were made diabetic using streptozotocin injections. Retinal digestion using trypsin was performed and acellular capillaries enumerated. Capillary occlusion by GFP(+) cells was used to measure leukostasis. Overexpression of ACE2 prevented (prevention cohort: untreated diabetic, 11.3 ± 1.4; ACE2 diabetic, 6.4 ± 0.9 per mm(2)) and partially reversed (reversal cohort: untreated diabetic, 15.7 ± 1.9; ACE2 diabetic, 6.5 ± 1.2 per mm(2)) the diabetes-associated increase of acellular capillaries and the increase of infiltrating inflammatory cells into the retina (F4/80(+)) (prevention cohort: untreated diabetic, 24.2 ± 6.7; ACE2 diabetic, 2.5 ± 1.6 per mm(2); reversal cohort: untreated diabetic, 56.8 ± 5.2; ACE2 diabetic, 5.6 ± 2.3 per mm(2)). In both study cohorts, intracapillary bone marrow-derived cells, indicative of leukostasis, were only observed in diabetic animals receiving control AAV injections. These results indicate that diabetic retinopathy, and possibly other diabetic microvascular complications, can be prevented and reversed by locally restoring the balance between the classic and vasoprotective renin angiotensin system.Item Angiotensin Converting Enzyme 2 in Cardiopulmonary Diseases: Ramifications for the Control of SARS-CoV-2(American Heart Association, 2020-09) Sharma, Ravindra K.; Stevens, Bruce R.; Obukhov, Alexander G.; Grant, Maria B.; Oudit, Gavin Y.; Li, Qiuhong; Richards, Elaine M.; Pepine, Carl J.; Raizada, Mohan K.; Anatomy and Cell Biology, School of MedicineDiscovery of angiotensin converting enzyme 2 (ACE2) revealed that the renin angiotensin system (RAS) has two counterbalancing arms. ACE2 is a major player in the protective arm, highly expressed in lungs and gut with the ability to mitigate cardiopulmonary diseases such as inflammatory lung disease. ACE2 also exhibits activities involving gut microbiome, nutrition, and as a chaperone stabilizing the neutral amino acid transporter, B0AT1, in gut. But the current interest in ACE2 arises because it is the cell surface receptor for the novel coronavirus, SARS-CoV-2, to infect host cells, similar to SARS-CoV. This suggests that ACE2 be considered harmful, however because of its important other roles, it is paradoxically a potential therapeutic target for cardiopulmonary diseases including COVID-19, caused by SARS-CoV-2. This review describes the discovery of ACE2, its physiological functions, and its place in the RAS. It illustrates new analyses of the structure of ACE2 that provides better understanding of its actions particularly in lung and gut, shedding of ACE2 by ADAM17 and role of TMPRSS2 in SARS-CoV-2 entry into host cells. Cardiopulmonary diseases are associated with decreased ACE2 activity and the mitigation by increasing ACE2 activity along with its therapeutic relevance are addressed. Finally, the potential use of ACE2 as a treatment target in COVID-19, despite its role to allow viral entry into host cells, is suggested.Item Antagonism of angiotensin 1-7 prevents the therapeutic effects of recombinant human ACE2(Springer, 2015-09) Patel, Vaibhav B.; Takawale, Abhijit; Ramprasath, Tharmarajan; Das, Subhash K.; Basu, Ratnadeep; Grant, Maria B.; Hall, David A.; Kassiri, Zamaneh; Oudit, Gavin Y.; Department of Medicine, IU School of MedicineActivation of the angiotensin 1-7/Mas receptor (MasR) axis counteracts angiotensin II (Ang II)-mediated cardiovascular disease. Recombinant human angiotensin-converting enzyme 2 (rhACE2) generates Ang 1-7 from Ang II. We hypothesized that the therapeutic effects of rhACE2 are dependent on Ang 1-7 action. Wild type male C57BL/6 mice (10-12 weeks old) were infused with Ang II (1.5 mg/kg/d) and treated with rhACE2 (2 mg/kg/d). The Ang 1-7 antagonist, A779 (200 ng/kg/min), was administered to a parallel group of mice. rhACE2 prevented Ang II-induced hypertrophy and diastolic dysfunction while A779 prevented these beneficial effects and precipitated systolic dysfunction. rhACE2 effectively antagonized Ang II-mediated myocardial fibrosis which was dependent on the action of Ang 1-7. Myocardial oxidative stress and matrix metalloproteinase 2 activity was further increased by Ang 1-7 inhibition even in the presence of rhACE2. Activation of Akt and endothelial nitric oxide synthase (eNOS) by rhACE2 were suppressed by the antagonism of Ang 1-7 while the activation of pathological signaling pathways was maintained. Blocking Ang 1-7 action prevents the therapeutic effects of rhACE2 in the setting of elevated Ang II culminating in systolic dysfunction. These results highlight a key cardioprotective role of Ang 1-7, and increased Ang 1-7 action represents a potential therapeutic strategy for cardiovascular diseases. KEY MESSAGES: Activation of the renin-angiotensin system (RAS) plays a key pathogenic role in cardiovascular disease. ACE2, a monocarboxypeptidase, negatively regulates pathological effects of Ang II. Antagonizing Ang 1-7 prevents the therapeutic effects of recombinant human ACE2. Our results highlight a key protective role of Ang 1-7 in cardiovascular disease.Item Bone Marrow-Derived Cells Restore Functional Integrity of the Gut Epithelial and Vascular Barriers in a Model of Diabetes and ACE2 Deficiency(AHA, 2019-11-08) Duan, Yaqian; Prasad, Ram; Feng, Dongni; Beli, Eleni; Calzi, Sergio Li; Longhini, Ana Leda F.; Lamendella, Regina; Floyd, Jason L.; Dupont, Mariana; Noothi, Sunil K.; Sreejit, Gopal Krishan; Athmanathan, Baskaran; Wright, Justin; Jensen, Amanda R.; Oudit, Gavin Y.; Markel, Troy A.; Nagareddy, Prabhakara R; Obukhov, Alexander G.; Grant, Maria B.; Anatomy and Cell Biology, School of MedicineRationale: There is incomplete knowledge of the impact of bone marrow (BM) cells on the gut microbiome and gut barrier function. Objective: We postulated that diabetes and systemic angiotensin-converting enzyme 2 (ACE2) deficiency would synergize to adversely impact both the microbiome and gut barrier function. Methods and Results: Bacterial 16S rRNA sequencing and metatranscriptomic analysis were performed on fecal samples from WT, ACE2−/y, Akita (type 1 diabetic, T1D), and ACE2−/y-Akita mice. Gut barrier integrity was assessed by immunofluorescence, and BM cell extravasation into the small intestine was evaluated by flow cytometry. In the ACE2−/y-Akita or Akita mice, the disrupted barrier was associated with reduced levels of myeloid angiogenic cells (MACs), but no increase in inflammatory monocytes was observed within the gut parenchyma. Genomic and metatranscriptomic analysis of the microbiome of ACE2−/y-Akita mice demonstrated a marked increase in peptidoglycan (PGN) producing bacteria. When compared to control cohorts treated with saline, intraperitoneal administration of MACs significantly decreased the microbiome gene expression associated with PGN biosynthesis and restored epithelial and endothelial gut barrier integrity. Also indicative of diabetic gut barrier dysfunction, increased levels of PGN and intestinal fatty acid binding protein-2 (FABP-2) were observed in plasma of human subjects with T1D (n=21) and Type 2 diabetes (T2D, n=23) compared to non-diabetic controls (n=23). Using human retinal endothelial cells, we determined that PGN activates a non-canonical Toll-like receptor-2 (TLR2) associated MyD88-ARNO-ARF6 signaling cascade, resulting in destabilization of p120-catenin and internalization of VE-cadherin as a mechanism of deleterious impact of PGN on the endothelium. Conclusion: We demonstrate for the first time that the defect in gut barrier function and dysbiosis in ACE2−/y-Akita mice can be favorably impacted by exogenous administration of MACs.Item Loss of Angiotensin-Converting Enzyme 2 Exacerbates Diabetic Retinopathy by Promoting Bone Marrow Dysfunction(Wiley, 2018-09) Duan, Yaqian; Beli, Eleni; Calzi, Sergio Li; Quigley, Judith L.; Miller, Rehae C.; Moldovan, Leni; Feng, Dongni; Salazar, Tatiana E.; Hazra, Sugata; Al-Sabah, Jude; Chalam, Kakarla V.; Trinh, Thao Le Phuong; Meroueh, Marya; Markel, Troy A.; Murray, Matthew C.; Vyas, Ruchi J.; Boulton, Michael E.; Parsons-Wingerter, Patricia; Oudit, Gavin Y.; Obukhov, Alexander G.; Grant, Maria B.; Cellular and Integrative Physiology, School of MedicineAngiotensin-converting enzyme 2 (ACE2) is the primary enzyme of the vasoprotective axis of the renin angiotensin system (RAS). We tested the hypothesis that loss of ACE2 would exacerbate diabetic retinopathy by promoting bone marrow dysfunction. ACE2-/y were crossed with Akita mice, a model of type 1 diabetes. When comparing the bone marrow of the ACE2-/y-Akita mice to that of Akita mice, we observed a reduction of both short-term and long-term repopulating hematopoietic stem cells, a shift of hematopoiesis towards myelopoiesis, and an impairment of lineage-c-kit+ hematopoietic stem/progenitor cell (HS/PC) migration and proliferation. Migratory and proliferative dysfunction of these cells was corrected by exposure to angiotensin-1–7 (Ang-1–7), the protective peptide generated by ACE2. Over the duration of diabetes examined, ACE2 deficiency led to progressive reduction in electrical responses assessed by electroretinography and to increases in neural infarcts observed by fundus photography. Compared to Akita mice, ACE2-/y-Akita at 9-months of diabetes showed an increased number of acellular capillaries indicative of more severe diabetic retinopathy. In diabetic and control human subjects, CD34+ cells, a key bone marrow HS/PC population, were assessed for changes in mRNA levels for MAS, the receptor for Ang-1–7. Levels were highest in CD34+ cells from diabetics without retinopathy. Higher serum Ang-1–7 levels predicted protection from development of retinopathy in diabetics. Treatment with Ang-1–7 or alamandine restored the impaired migration function of CD34+ cells from subjects with retinopathy. These data support that activation of the protective RAS within HS/PCs may represent a therapeutic strategy for prevention of diabetic retinopathy.Item Restructuring of the Gut Microbiome by Intermittent Fasting Prevents Retinopathy and Prolongs Survival in db/db Mice(American Diabetes Association, 2018-09) Beli, Eleni; Yan, Yuanqing; Moldovan, Leni; Vieira, Cristiano P.; Gao, Ruli; Duan, Yaqian; Prasad, Ram; Bhatwadekar, Ashay; White, Fletcher A.; Townsend, Steven D.; Chan, Luisa; Ryan, Caitlin N.; Morton, Daniel; Moldovan, Emil G.; Chu, Fang-I; Oudit, Gavin Y.; Derendorf, Hartmut; Adorini, Luciano; Wang, Xiaoxin X.; Evans-Molina, Carmella; Mirmira, Raghavendra G.; Boulton, Michael E.; Yoder, Mervin C.; Li, Qiuhong; Levi, Moshe; Busik, Julia V.; Grant, Maria B.; Pediatrics, School of MedicineIntermittent fasting (IF) protects against the development of metabolic diseases and cancer, but whether it can prevent diabetic microvascular complications is not known. In db/db mice, we examined the impact of long-term IF on diabetic retinopathy (DR). Despite no change in glycated hemoglobin, db/db mice on the IF regimen displayed significantly longer survival and a reduction in DR end points, including acellular capillaries and leukocyte infiltration. We hypothesized that IF-mediated changes in the gut microbiota would produce beneficial metabolites and prevent the development of DR. Microbiome analysis revealed increased levels of Firmicutes and decreased Bacteroidetes and Verrucomicrobia. Compared with db/db mice on ad libitum feeding, changes in the microbiome of the db/db mice on IF were associated with increases in gut mucin, goblet cell number, villi length, and reductions in plasma peptidoglycan. Consistent with the known modulatory effects of Firmicutes on bile acid (BA) metabolism, measurement of BAs demonstrated a significant increase of tauroursodeoxycholate (TUDCA), a neuroprotective BA, in db/db on IF but not in db/db on AL feeding. TGR5, the TUDCA receptor, was found in the retinal primary ganglion cells. Expression of TGR5 did not change with IF or diabetes. However, IF reduced retinal TNF-α mRNA, which is a downstream target of TGR5 activation. Pharmacological activation of TGR5 using INT-767 prevented DR in a second diabetic mouse model. These findings support the concept that IF prevents DR by restructuring the microbiota toward species producing TUDCA and subsequent retinal protection by TGR5 activation.Item Role of the ACE2/Angiotensin 1-7 Axis of the Renin-Angiotensin System in Heart Failure(American Heart Association, 2016-04-15) Patel, Vaibhav B.; Zhong, Jiu-Chang; Grant, Maria B.; Oudit, Gavin Y.; Ophthalmology, School of MedicineHeart failure (HF) remains the most common cause of death and disability, and a major economic burden, in industrialized nations. Physiological, pharmacological, and clinical studies have demonstrated that activation of the renin-angiotensin system is a key mediator of HF progression. Angiotensin-converting enzyme 2 (ACE2), a homolog of ACE, is a monocarboxypeptidase that converts angiotensin II into angiotensin 1-7 (Ang 1-7) which, by virtue of its actions on the Mas receptor, opposes the molecular and cellular effects of angiotensin II. ACE2 is widely expressed in cardiomyocytes, cardiofibroblasts, and coronary endothelial cells. Recent preclinical translational studies confirmed a critical counter-regulatory role of ACE2/Ang 1-7 axis on the activated renin-angiotensin system that results in HF with preserved ejection fraction. Although loss of ACE2 enhances susceptibility to HF, increasing ACE2 level prevents and reverses the HF phenotype. ACE2 and Ang 1-7 have emerged as a key protective pathway against HF with reduced and preserved ejection fraction. Recombinant human ACE2 has been tested in phase I and II clinical trials without adverse effects while lowering and increasing plasma angiotensin II and Ang 1-7 levels, respectively. This review discusses the transcriptional and post-transcriptional regulation of ACE2 and the role of the ACE2/Ang 1-7 axis in cardiac physiology and in the pathophysiology of HF. The pharmacological and therapeutic potential of enhancing ACE2/Ang 1-7 action as a novel therapy for HF is highlighted.Item SARS-CoV-2 Infections and ACE2: Clinical Outcomes Linked With Increased Morbidity and Mortality in Individuals With Diabetes(American Diabetes Association, 2020-07-15) Obukhov, Alexander G.; Stevens, Bruce R.; Prasad, Ram; Calzi, Sergio Li; Boulton, Michael E.; Raizada, Mohan K.; Oudit, Gavin Y.; Grant, Maria B.; Anatomy and Cell Biology, School of MedicineIndividuals with diabetes suffering from coronavirus disease 2019 (COVID-19) exhibit increased morbidity and mortality compared with individuals without diabetes. In this Perspective, we critically evaluate and argue that this is due to a dysregulated renin-angiotensin system (RAS). Previously, we have shown that loss of angiotensin-I converting enzyme 2 (ACE2) promotes the ACE/angiotensin-II (Ang-II)/angiotensin type 1 receptor (AT1R) axis, a deleterious arm of RAS, unleashing its detrimental effects in diabetes. As suggested by the recent reports regarding the pathogenesis of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), upon entry into the host, this virus binds to the extracellular domain of ACE2 in nasal, lung, and gut epithelial cells through its spike glycoprotein subunit S1. We put forth the hypothesis that during this process, reduced ACE2 could result in clinical deterioration in COVID-19 patients with diabetes via aggravating Ang-II–dependent pathways and partly driving not only lung but also bone marrow and gastrointestinal pathology. In addition to systemic RAS, the pathophysiological response of the local RAS within the intestinal epithelium involves mechanisms distinct from that of RAS in the lung; however, both lung and gut are impacted by diabetes-induced bone marrow dysfunction. Careful targeting of the systemic and tissue RAS may optimize clinical outcomes in subjects with diabetes infected with SARS-CoV-2.