- Browse by Author
Browsing by Author "Ou, Xuan"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Implications of DPP4 modification of proteins that regulate stem/progenitor and more mature cell types(American Society of Hematology, 2013-07-11) Ou, Xuan; O'Leary, Heather A.; Broxmeyer, Hal E.; Microbiology & Immunology, IU School of MedicineDipeptidylpeptidase (DPP) 4 has the potential to truncate proteins with a penultimate alanine, proline, or other selective amino acids at the N-terminus. DPP4 truncation of certain chemokines, colony-stimulating factors, and interleukins have recently been linked to regulation of hematopoietic stem/progenitor cells, more mature blood cells, and other cell types. We believe that the potential role of DPP4 in modification of many regulatory proteins, and their subsequent effects on numerous stem/progenitor and other cell-type functions has not been adequately appreciated. This review addresses the potential implications of the modifying effects of DPP4 on a large number of cytokines and other growth-regulating factors with either proven or putative DPP4 truncation sites on hematopoietic cells, and subsequent effects of DPP4-truncated proteins on multiple aspects of steady-state and stressed hematopoiesis, including stem/progenitor cell, and more mature cell, function.Item SIRT1 DEFICIENCY COMPROMISES MOUSE EMBRYONIC STEM CELL DIFFERENTIATION, AND EMBRYONIC AND ADULT HEMATOPOIESIS IN THE MOUSE(2011-03-16) Ou, Xuan; Broxmeyer, Hal E.; Pelus, Louis; Roman, Ann; Yoder, Mervin C.SIRT1 (Sirtuin 1) is a founding member of a family of seven proteins and histone deacetylases. It is involved in cellular resistance to stress, metabolism, differentiation, aging, and tumor suppression. SIRT1-/- mice demonstrate embryonic and postnatal development defects. We examined hematopoietic and endothelial cell differentiation of SIRT1-/- mouse embryonic stem (mES) cells in vitro, and hematopoietic progenitors in SIRT1+/+, SIRT1+/-, and SIRT1-/- mice. SIRT1-/- ES cells exhibited markedly delayed/immature formation of blast colony-forming cells (BL-CFCs). When individual blast colonies were analyzed for hematopoietic and endothelial potential, replated SIRT1-/- BL-CFC possessed limited hematopoietic potential, whereas endothelial potential was essentially unaltered. The ability of SIRT1-/- ES cells to form primitive erythroid progenitors was not only delayed but greatly decreased. Moreover, after differentiation of SIRT1-/- mES cells, there were also significant decreases in granulocyte-macrophage (CFU-GM) and multipotential (CFU-GEMM) progenitor cells. Differentiation delay/defects were associated with delayed capacity to switch off Oct4, Nanog and Fgf5, decreased β-H1 globin, β-major globin, and Scl gene expression and reduced activation of the Erk1/2 pathway upon SIRT1-/- ES cell commitment. Reintroduction of WT SIRT1 into SIRT1-/- cells partially rescued the primitive erythroid progenitor formation of SIRT1-/- cells and the expression of hemoglobin genes, Hbb-bh1 and Hbb-b1, suggesting that the defect of hematopoietic commitment is due to deletion of SIRT1, and not to genetic drifting of SIRT1-/- cells. To confirm the requirement for SIRT1 for normal development of hematopoietic progenitor cells, we assessed embryonic and adult hematopoiesis in SIRT1+/+, SIRT1+/- and SIRT1-/- mice. Yolk sacs from SIRT1 mutant embryos generated fewer primitive erythroid precursors compared to wild-type (WT) and heterozygous mice. Moreover, knockout of SIRT1 decreased primary bone marrow hematopoietic progenitor cells (HPCs) in 5 week and 12 month old mice, which was especially notable at lower (5%) O2 tension. In addition these progenitors survived less well in vitro under conditions of delayed growth factor addition. Taken together, these results demonstrate that SIRT1 plays a role in ES cell hematopoietic differentiation and mouse hematopoiesis.Item SIRT1 positively regulates autophagy and mitochondria function in embryonic stem cells under oxidative stress(Wiley, 2014-05) Ou, Xuan; Lee, Man Ryul; Huang, Xinxin; Messina-Graham, Steven; Broxmeyer, Hal E.; Department of Microbiology & Immunology, School of MedicineSIRT1, an NAD-dependent deacetylase, plays a role in regulation of autophagy. SIRT1 increases mitochondrial function and reduces oxidative stress, and has been linked to age-related reactive oxygen species (ROS) generation, which is highly dependent on mitochondrial metabolism. H2O2 induces oxidative stress and autophagic cell death through interference with Beclin 1 and the mTOR signaling pathways. We evaluated connections between SIRT1 activity and induction of autophagy in murine (m) and human (h) embryonic stem cells (ESCs) upon ROS challenge. Exogenous H2 O2 (1 mM) induced apoptosis and autophagy in wild-type (WT) and Sirt1-/- mESCs. High concentrations of H2O2 (1 mM) induced more apoptosis in Sirt1-/-, than in WT mESCs. However, addition of 3-methyladenine, a widely used autophagy inhibitor, in combination with H2O2 induced more cell death in WT than in Sirt1-/- mESCs. Decreased induction of autophagy in Sirt1-/- mESCs was demonstrated by decreased conversion of LC3-I to LC3-II, lowered expression of Beclin-1, and decreased LC3 punctae and LysoTracker staining. H2O2 induced autophagy with loss of mitochondrial membrane potential and disruption of mitochondrial dynamics in Sirt1-/- mESCs. Increased phosphorylation of P70/85-S6 kinase and ribosomal S6 was noted in Sirt1-/- mESCs, suggesting that SIRT1 regulates the mTOR pathway. Consistent with effects in mESCs, inhibition of SIRT1 using Lentivirus-mediated SIRT1 shRNA in hESCs demonstrated that knockdown of SIRT1 decreased H2O2-induced autophagy. This suggests a role for SIRT1 in regulating autophagy and mitochondria function in ESCs upon oxidative stress, effects mediated at least in part by the class III PI3K/Beclin 1 and mTOR pathways.