- Browse by Author
Browsing by Author "Ooms, Nathan"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item In Vivo Renal Lipid Quantification by Accelerated Magnetic Resonance Spectroscopic Imaging at 3T: Feasibility and Reliability Study(MDPI, 2022-04-23) Alhulail, Ahmad A.; Servati, Mahsa; Ooms, Nathan; Akin, Oguz; Dincer, Alp; Thomas, M. Albert; Dydak, Ulrike; Emir, Uzay E.; Radiology and Imaging Sciences, School of MedicineA reliable and practical renal-lipid quantification and imaging method is needed. Here, the feasibility of an accelerated MRSI method to map renal fat fractions (FF) at 3T and its repeatability were investigated. A 2D density-weighted concentric-ring-trajectory MRSI was used for accelerating the acquisition of 48 × 48 voxels (each of 0.25 mL spatial resolution) without respiratory navigation implementations. The data were collected over 512 complex-FID timepoints with a 1250 Hz spectral bandwidth. The MRSI sequence was designed with a metabolite-cycling technique for lipid-water separation. The in vivo repeatability performance of the sequence was assessed by conducting a test-reposition-retest study within healthy subjects. The coefficient of variation (CV) in the estimated FF from the test-retest measurements showed a high degree of repeatability of MRSI-FF (CV = 4.3 ± 2.5%). Additionally, the matching level of the spectral signature within the same anatomical region was also investigated, and their intrasubject repeatability was also high, with a small standard deviation (8.1 ± 6.4%). The MRSI acquisition duration was ~3 min only. The proposed MRSI technique can be a reliable technique to quantify and map renal metabolites within a clinically acceptable scan time at 3T that supports the future application of this technique for the non-invasive characterization of heterogeneous renal diseases and tumors.Item Pregnant maternal brain dorsal anterior cingulate cortex choline/creatine ratios on 1H-MR spectroscopy in opioid exposure(Frontiers Media, 2025-04-16) Class, Jonathan A.; Vishnubhotla, Ramana V.; Zhao, Yi; Ooms, Nathan; Haas, David M.; Sadhasivam, Senthilkumar; Radhakrishnan, Rupa; Radiology and Imaging Sciences, School of MedicineThere is growing interest in understanding the effects of opioid use on the brain, yet the effects of opioid use on the pregnant maternal brain are still relatively unknown. Pregnant women with opioid exposure during pregnancy are at high risk for adverse neurological and neuropsychiatric outcomes. Much of what is currently known about the impact of opioids on the maternal brain is mainly derived from studies in animal models; however, species-specific opioid pathways and other socio-environmental factors complicate the interpretation of results. A few studies in non-pregnant adults have shown the utility of magnetic resonance spectroscopy (MRS) in risk prediction in substance exposure. We know that pregnancy alters the pharmacodynamics and pharmacokinetics of opioid metabolism, and the impact of opioids on synapses may differ during pregnancy compared to the non-pregnant state. We, therefore, aimed to understand the neurometabolic alterations in pregnant women on medications for opioid use disorder (MOUD). In our multicenter study, we utilized 1H MRS to analyze metabolic alterations in the dorsal anterior cingulate cortex (dACC) in pregnant women on MOUD (12 subjects) vs. pregnant control women (21 subjects) without substance exposure. Using multivariable linear regression, we identified a positive association between opioid exposure and choline-to-creatine (Cho/Cr) ratios after correcting for gestational age and scanner site. We also identified a significant elevation in the Cho/Cr ratio in pregnant women on MOUD and concomitant polysubstance exposure when compared to pregnant women on MOUD without exposure to other substances and control pregnant women. These altered metabolite concentrations that we identified in the dACC may provide a mechanistic understanding of the neurobiology of MOUD and insights for better management and outcomes.