- Browse by Author
Browsing by Author "Oblak, Adrian L."
Now showing 1 - 10 of 50
Results Per Page
Sort Options
Item [(11)C]PiB PET in Gerstmann-Sträussler-Scheinker disease(e-Century Publishing Corporation, 2016) Deters, Kacie D.; Risacher, Shannon L.; Yoder, Karmen K.; Oblak, Adrian L.; Unverzagt, Frederick W.; Murrell, Jill R.; Epperson, Francine; Tallman, Eileen F.; Quaid, Kimberly A.; Farlow, Martin R.; Saykin, Andrew J.; Ghetti, Bernardino; Department of Pathology & Laboratory Medicine, IU School of MedicineGerstmann-Sträussler-Scheinker Disease (GSS) is a familial neurodegenerative disorder characterized clinically by ataxia, parkinsonism, and dementia, and neuropathologically by deposition of diffuse and amyloid plaques composed of prion protein (PrP). The purpose of this study was to evaluate if [(11)C]Pittsburgh Compound B (PiB) positron emission tomography (PET) is capable of detecting PrP-amyloid in PRNP gene carriers. Six individuals at risk for GSS and eight controls underwent [(11)C]PiB PET scans using standard methods. Approximately one year after the initial scan, each of the three asymptomatic carriers (two with PRNP P102L mutation, one with PRNP F198S mutation) underwent a second [(11)C]PiB PET scan. Three P102L carriers, one F198S carrier, and one non-carrier of the F198S mutation were cognitively normal, while one F198S carrier was cognitively impaired during the course of this study. No [(11)C]PiB uptake was observed in any subject at baseline or at follow-up. Neuropathologic study of the symptomatic individual revealed PrP-immunopositive plaques and tau-immunopositive neurofibrillary tangles in cerebral cortex, subcortical nuclei, and brainstem. PrP deposits were also numerous in the cerebellar cortex. This is the first study to investigate the ability of [(11)C]PiB PET to bind to PrP-amyloid in GSS F198S subjects. This finding suggests that [(11)C]PiB PET is not suitable for in vivo assessment of PrP-amyloid plaques in patients with GSS.Item Age-dependent microstructure alterations in 5xFAD mice by high-resolution diffusion tensor imaging(Frontiers Media, 2022-08-17) Maharjan, Surendra; Tsai, Andy P.; Lin, Peter B.; Ingraham, Cynthia; Jewett, Megan R.; Landreth, Gary E.; Oblak, Adrian L.; Wang, Nian; Radiology and Imaging Sciences, School of MedicinePurpose: To evaluate the age-dependent microstructure changes in 5xFAD mice using high-resolution diffusion tensor imaging (DTI). Methods: The 5xFAD mice at 4, 7.5, and 12 months and the wild-type controls at 4 months were scanned at 9.4T using a 3D echo-planar imaging (EPI) pulse sequence with the isotropic spatial resolution of 100 μm. The b-value was 3000 s/mm2 for all the diffusion MRI scans. The samples were also acquired with a gradient echo pulse sequence at 50 μm isotropic resolution. The microstructure changes were quantified with DTI metrics, including fractional anisotropy (FA) and mean diffusivity (MD). The conventional histology was performed to validate with MRI findings. Results: The FA values (p = 0.028) showed significant differences in the cortex between wild-type (WT) and 5xFAD mice at 4 months, while hippocampus, anterior commissure, corpus callosum, and fornix showed no significant differences for either FA and MD. FA values of 5xFAD mice gradually decreased in cortex (0.140 ± 0.007 at 4 months, 0.132 ± 0.008 at 7.5 months, 0.126 ± 0.013 at 12 months) and fornix (0.140 ± 0.007 at 4 months, 0.132 ± 0.008 at 7.5 months, 0.126 ± 0.013 at 12 months) with aging. Both FA (p = 0.029) and MD (p = 0.037) demonstrated significant differences in corpus callosum between 4 and 12 months age old. FA and MD were not significantly different in the hippocampus or anterior commissure. The age-dependent microstructure alterations were better captured by FA when compared to MD. Conclusion: FA showed higher sensitivity to monitor amyloid deposition in 5xFAD mice. DTI may be utilized as a sensitive biomarker to monitor beta-amyloid progression for preclinical studies.Item Amyloid polymorphisms constitute distinct clouds of conformational variants in different etiological subtypes of Alzheimer's disease(National Academy of Sciences, 2017-12-05) Rasmussen, Jay; Mahler, Jasmin; Beschorner, Natalie; Kaeser, Stephan A.; Häsler, Lisa M.; Baumann, Frank; Nyström, Sofie; Portelius, Erik; Blennow, Kaj; Lashley, Tammaryn; Fox, Nick C.; Sepulveda-Falla, Diego; Glatzel, Markus; Oblak, Adrian L.; Ghetti, Bernardino; Nilsson, K. Peter R.; Hammarström, Per; Staufenbiel, Matthias; Walker, Lary C.; Jucker, Mathias; Pathology and Laboratory Medicine, School of MedicineThe molecular architecture of amyloids formed in vivo can be interrogated using luminescent conjugated oligothiophenes (LCOs), a unique class of amyloid dyes. When bound to amyloid, LCOs yield fluorescence emission spectra that reflect the 3D structure of the protein aggregates. Given that synthetic amyloid-β peptide (Aβ) has been shown to adopt distinct structural conformations with different biological activities, we asked whether Aβ can assume structurally and functionally distinct conformations within the brain. To this end, we analyzed the LCO-stained cores of β-amyloid plaques in postmortem tissue sections from frontal, temporal, and occipital neocortices in 40 cases of familial Alzheimer's disease (AD) or sporadic (idiopathic) AD (sAD). The spectral attributes of LCO-bound plaques varied markedly in the brain, but the mean spectral properties of the amyloid cores were generally similar in all three cortical regions of individual patients. Remarkably, the LCO amyloid spectra differed significantly among some of the familial and sAD subtypes, and between typical patients with sAD and those with posterior cortical atrophy AD. Neither the amount of Aβ nor its protease resistance correlated with LCO spectral properties. LCO spectral amyloid phenotypes could be partially conveyed to Aβ plaques induced by experimental transmission in a mouse model. These findings indicate that polymorphic Aβ-amyloid deposits within the brain cluster as clouds of conformational variants in different AD cases. Heterogeneity in the molecular architecture of pathogenic Aβ among individuals and in etiologically distinct subtypes of AD justifies further studies to assess putative links between Aβ conformation and clinical phenotype.Item Association of Hypercholesterolemia with Alzheimer’s Disease Pathology and Cerebral Amyloid Angiopathy(IOS Press, 2020-02-18) Xu, Chenjia; Apostolova, Liana G.; Oblak, Adrian L.; Gao, Sujuan; Biostatistics, School of Public HealthBackground: Animal studies have shown that diet-induced hypercholesterolemia (HC) increases amyloid-β (Aβ) accumulation and accelerates Alzheimer’s disease (AD) pathology. However, the association of HC with AD in human studies has not been consistently established. Objective: We aimed to investigate the relationship between HC and risk of AD neuropathology in a large national sample with autopsies. Methods: This study used neuropathological and clinical data from 3,508 subjects from the National Alzheimer’s Coordinating Center (NACC) who underwent autopsies from 2005 to 2017. Demographic and clinical characteristics, as well as neuropathological outcomes were compared between subjects with and without HC. Associations between HC and AD neuropathology were examined by multivariate ordinal logistic regressions adjusting for potential confounders. Results: HC was not associated with any AD neuropathology in a model only adjusting for demographic variables. However, HC was significantly associated with higher CERAD neuritic and diffuse plaque burden, higher Braak stage, and more severe cerebral amyloid angiopathy when analyzed in a multivariate model controlling for comorbidities. Additional adjusting for cerebrovascular conditions did not diminish these associations. The association between HC and increased risk of neuritic plaques weakened but remained significant even after controlling for ApoE genotype. Conclusion: This study suggested that HC was associated with increased severity of AD pathology, which could only be partially accounted for by ApoE genotype. The associations were not mediated by cerebrovascular conditions.Item Characterizing Molecular and Synaptic Signatures in mouse models of Late-Onset Alzheimer’s Disease Independent of Amyloid and Tau Pathology(bioRxiv, 2023-12-20) Kotredes, Kevin P.; Pandey, Ravi S.; Persohn, Scott; Elderidge, Kierra; Burton, Charles P.; Miner, Ethan W.; Haynes, Kathryn A.; Santos, Diogo Francisco S.; Williams, Sean-Paul; Heaton, Nicholas; Ingraham, Cynthia M.; Lloyd, Christopher; Garceau, Dylan; O’Rourke, Rita; Herrick, Sarah; Rangel-Barajas, Claudia; Maharjan, Surendra; Wang, Nian; Sasner, Michael; Lamb, Bruce T.; Territo, Paul R.; Sukoff Rizzo, Stacey J.; Carter, Gregory W.; Howell, Gareth R.; Oblak, Adrian L.; Medical and Molecular Genetics, School of MedicineIntroduction: MODEL-AD is creating and distributing novel mouse models with humanized, clinically relevant genetic risk factors to more accurately mimic LOAD than commonly used transgenic models. Methods: We created the LOAD2 model by combining APOE4, Trem2*R47H, and humanized amyloid-beta. Mice aged up to 24 months were subjected to either a control diet or a high-fat/high-sugar diet (LOAD2+HFD) from two months of age. We assessed disease-relevant outcomes, including in vivo imaging, biomarkers, multi-omics, neuropathology, and behavior. Results: By 18 months, LOAD2+HFD mice exhibited cortical neuron loss, elevated insoluble brain Aβ42, increased plasma NfL, and altered gene/protein expression related to lipid metabolism and synaptic function. In vivo imaging showed age-dependent reductions in brain region volume and neurovascular uncoupling. LOAD2+HFD mice also displayed deficits in acquiring touchscreen-based cognitive tasks. Discussion: Collectively the comprehensive characterization of LOAD2+HFD mice reveal this model as important for preclinical studies that target features of LOAD independent of amyloid and tau.Item Clinicopathological Correlates in a PRNP P102L Mutation Carrier with Rapidly Progressing Parkinsonism-dystonia(Wiley, 2016-07) Umeh, Chizoba C.; Kalakoti, Piyush; Greenberg, Michael K.; Notari, Silvio; Cohen, Yvonne; Gambetti, Pierluigi; Oblak, Adrian L.; Ghetti, Bernardino; Mari, Zoltan; Pathology and Laboratory Medicine, School of MedicineParkinsonism-dystonia is rare in carriers of PRNP P102L mutation. Severity and distribution of prion protein (PrP) deposition may influence the clinical presentation. We present such clinic-pathological correlation in a 56-year-old male with a PRNP P102L mutation associated with a phenotype characterized by rapidly progressing parkinsonism-dystonia. The patient was studied clinically (videotaped exams, brain MRIs); molecular genetically (gene sequence analysis); and neuropathologically (histology, immunohistochemistry) during his 7-month disease course. The patient had parkinsonism, apraxia, aphasia, and dystonia, which progressed rapidly. Molecular genetic analysis revealed PRNP P102L mutation carrier status. Brain MRIs revealed progressive global volume loss and T2/FLAIR hyperintensity in neocortex and basal ganglia. Postmortem examination showed neuronal loss, gliosis, spongiform changes, and PrP deposition in the striatum. PrP immunohistochemistry revealed widespread severe PrP deposition in the thalamus and cerebellar cortex. Based on the neuropathological and molecular-genetic analysis, the rapidly progressing parkinsonism-dystonia correlated with nigrostriatal, thalamic, and cerebellar pathology.Item Comprehensive Evaluation of the 5XFAD Mouse Model for Preclinical Testing Applications: A MODEL-AD Study(Frontiers Media, 2021-07-23) Oblak, Adrian L.; Lin, Peter B.; Kotredes, Kevin P.; Pandey, Ravi S.; Garceau, Dylan; Williams, Harriet M.; Uyar, Asli; O’Rourke, Rita; O’Rourke, Sarah; Ingraham, Cynthia; Bednarczyk, Daria; Belanger, Melisa; Cope, Zackary A.; Little, Gabriela J.; Williams, Sean-Paul G.; Ash, Carl; Bleckert, Adam; Ragan, Tim; Logsdon, Benjamin A.; Mangravite, Lara M.; Sukoff Rizzo, Stacey J.; Territo, Paul R.; Carter, Gregory W.; Howell, Gareth R.; Sasner, Michael; Lamb, Bruce T.; Radiology and Imaging Sciences, School of MedicineThe ability to investigate therapeutic interventions in animal models of neurodegenerative diseases depends on extensive characterization of the model(s) being used. There are numerous models that have been generated to study Alzheimer’s disease (AD) and the underlying pathogenesis of the disease. While transgenic models have been instrumental in understanding AD mechanisms and risk factors, they are limited in the degree of characteristics displayed in comparison with AD in humans, and the full spectrum of AD effects has yet to be recapitulated in a single mouse model. The Model Organism Development and Evaluation for Late-Onset Alzheimer’s Disease (MODEL-AD) consortium was assembled by the National Institute on Aging (NIA) to develop more robust animal models of AD with increased relevance to human disease, standardize the characterization of AD mouse models, improve preclinical testing in animals, and establish clinically relevant AD biomarkers, among other aims toward enhancing the translational value of AD models in clinical drug design and treatment development. Here we have conducted a detailed characterization of the 5XFAD mouse, including transcriptomics, electroencephalogram, in vivo imaging, biochemical characterization, and behavioral assessments. The data from this study is publicly available through the AD Knowledge Portal.Item Control of the temporal development of Alzheimer's disease pathology by the MR1/MAIT cell axis(BMC, 2023-03-21) Wyatt‑Johnson, Season K.; Kersey, Holly N.; Codocedo, Juan F.; Newell, Kathy L.; Landreth, Gary E.; Lamb, Bruce T.; Oblak, Adrian L.; Brutkiewicz, Randy R.; Microbiology and Immunology, School of MedicineBackground: Neuroinflammation is an important feature of Alzheimer's disease (AD). Understanding which aspects of the immune system are important in AD may lead to new therapeutic approaches. We study the major histocompatibility complex class I-related immune molecule, MR1, which is recognized by an innate-like T cell population called mucosal-associated invariant T (MAIT) cells. Methods: Having found that MR1 gene expression is elevated in the brain tissue of AD patients by mining the Agora database, we sought to examine the role of the MR1/MAIT cell axis in AD pathology. Brain tissue from AD patients and the 5XFAD mouse model of AD were used to analyze MR1 expression through qPCR, immunofluorescence, and flow cytometry. Furthermore, mice deficient in MR1 and MAIT cells were crossed with the 5XFAD mice to produce a model to study how the loss of this innate immune axis alters AD progression. Moreover, 5XFAD mice were also used to study brain-resident MAIT cells over time. Results: In tissue samples from AD patients and 5XFAD mice, MR1 expression was substantially elevated in the microglia surrounding plaques vs. those that are further away (human AD: P < 0.05; 5XFAD: P < 0.001). In 5XFAD mice lacking the MR1/MAIT cell axis, the development of amyloid-beta plaque pathology occurred at a significantly slower rate than in those mice with MR1 and MAIT cells. Furthermore, in brain tissue from 5XFAD mice, there was a temporal increase in MAIT cell numbers (P < 0.01) and their activation state, the latter determined by detecting an upregulation of both CD69 (P < 0.05) and the interleukin-2 receptor alpha chain (P < 0.05) via flow cytometry. Conclusions: Together, these data reveal a previously unknown role for the MR1/MAIT cell innate immune axis in AD pathology and its potential utility as a novel therapeutic target.Item Cytosolic Fc receptor TRIM21 inhibits seeded tau aggregation(National Academy of Sciences, 2017-01-17) McEwan, William A.; Falcon, Benjamin; Vaysburd, Marina; Clift, Dean; Oblak, Adrian L.; Ghetti, Bernardino; Goedert, Michel; James, Leo C.; Pathology and Laboratory Medicine, School of MedicineAlzheimer's disease (AD) and other neurodegenerative disorders are associated with the cytoplasmic aggregation of microtubule-associated protein tau. Recent evidence supports transcellular transfer of tau misfolding (seeding) as the mechanism of spread within an affected brain, a process reminiscent of viral infection. However, whereas microbial pathogens can be recognized as nonself by immune receptors, misfolded protein assemblies evade detection, as they are host-derived. Here, we show that when misfolded tau assemblies enter the cell, they can be detected and neutralized via a danger response mediated by tau-associated antibodies and the cytosolic Fc receptor tripartite motif protein 21 (TRIM21). We developed fluorescent, morphology-based seeding assays that allow the formation of pathological tau aggregates to be measured in situ within 24 h in the presence of picomolar concentrations of tau seeds. We found that anti-tau antibodies accompany tau seeds into the cell, where they recruit TRIM21 shortly after entry. After binding, TRIM21 neutralizes tau seeds through the activity of the proteasome and the AAA ATPase p97/VCP in a similar manner to infectious viruses. These results establish that intracellular antiviral immunity can be redirected against host-origin endopathogens involved in neurodegeneration.Item Deletion of Abi3 gene locus exacerbates neuropathological features of Alzheimer's disease in a mouse model of Aβ amyloidosis(American Association for the Advancement of Science, 2021-11) Karahan, Hande; Smith, Daniel C.; Kim, Byungwook; Dabin, Luke C.; Al-Amin, Md Mamun; Wijeratne, H.R. Sagara; Pennington, Taylor; di Prisco, Gonzalo Viana; McCord, Brianne; Lin, Peter Bor-Chian; Li, Yuxin; Peng, Junmin; Oblak, Adrian L.; Chu, Shaoyou; Atwood, Brady K.; Kim, Jungsu; Medical and Molecular Genetics, School of MedicineRecently, large-scale human genetics studies identified a rare coding variant in the ABI3 gene that is associated with an increased risk of Alzheimer’s disease (AD). However, pathways by which ABI3 contributes to the pathogenesis of AD are unknown. To address this question, we determined whether loss of ABI3 function affects pathological features of AD in the 5XFAD mouse model. We demonstrate that the deletion of Abi3 locus significantly increases amyloid β (Aβ) accumulation and decreases microglia clustering around the plaques. Furthermore, long-term potentiation is impaired in 5XFAD;Abi3 knockout (“Abi3−/−”) mice. Moreover, we identified marked changes in the proportion of microglia subpopulations in Abi3−/− mice using a single-cell RNA sequencing approach. Mechanistic studies demonstrate that Abi3 knockdown in microglia impairs migration and phagocytosis. Together, our study provides the first in vivo functional evidence that loss of ABI3 function may increase the risk of developing AD by affecting Aβ accumulation and neuroinflammation.