- Browse by Author
Browsing by Author "Nudelman, Kelly N. H."
Now showing 1 - 10 of 13
Results Per Page
Sort Options
Item Altered Cerebral Blood Flow One Month after Systemic Chemotherapy for Breast Cancer: A Prospective Study Using Pulsed Arterial Spin Labeling MRI Perfusion(Public Library of Science, 2014-05-09) Nudelman, Kelly N. H.; Wang, Yang; McDonald, Brenna C.; Conroy, Susan K.; Smith, Dori J.; West, John D.; O’Neill, Darren P.; Schneider, Bryan P.; Saykin, Andrew J.; Medical and Molecular Genetics, School of MedicineCerebral structural and functional alterations have been reported after chemotherapy for non-CNS cancers, yet the causative mechanism behind these changes remains unclear. This study employed a novel, non-invasive, MRI-based neuroimaging measure to provide the first direct longitudinal measurement of resting cerebral perfusion in breast cancer patients, which was tested for association with changes in cognitive function and gray matter density. Perfusion was measured using pulsed arterial spin labeling MRI in women with breast cancer treated with (N = 27) or without (N = 26) chemotherapy and matched healthy controls (N = 26) after surgery before other treatments (baseline), and one month after chemotherapy completion or yoked intervals. Voxel-based analysis was employed to assess perfusion in gray matter; changes were examined in relation to overall neuropsychological test performance and frontal gray matter density changes measured by structural MRI. Baseline perfusion was not significantly different across groups. Unlike control groups, chemotherapy-treated patients demonstrated significantly increased perfusion post-treatment relative to baseline, which was statistically significant relative to controls in the right precentral gyrus. This perfusion increase was negatively correlated with baseline overall neuropsychological performance, but was not associated with frontal gray matter density reduction. However, decreased frontal gray matter density was associated with decreased perfusion in bilateral frontal and parietal lobes in the chemotherapy-treated group. These findings indicate that chemotherapy is associated with alterations in cerebral perfusion which are both related to and independent of gray matter changes. This pattern of results suggests the involvement of multiple mechanisms of chemotherapy-induced cognitive dysfunction. Additionally, lower baseline cognitive function may be a risk factor for treatment-associated perfusion dysregulation. Future research is needed to clarify these mechanisms, identify individual differences in susceptibility to treatment-associated changes, and further examine perfusion change over time in survivors.Item Analysis of the Inverse Association between Cancer and Alzheimer’s Disease: Results from the Alzheimer’s Disease Neuroimaging Initiative Cohort(Office of the Vice Chancellor for Research, 2014-04-11) Nudelman, Kelly N. H.; Risacher, Shannon L.; West, John D.; Nho, Kwangsik; Ramanan, Vijay K.; McDonald, Brenna C.; Shen, Li; Foroud, Tatiana M.; Schneider, Bryan P.; Saykin, Andrew J.Although a number of studies support a reciprocal inverse association between diagnoses of cancer and Alzheimer’s disease (AD), to date there has not been any systemic investigation of the neurobiological impact of or genetic risk factors underlying this effect. To facilitate this goal, this study aimed to replicate the inverse association of cancer and AD using data from the NIA Alzheimer’s Disease Neuroimaging Initiative, which includes age-matched cases and controls with information on cancer history, AD progression, neuroimaging, and genomic data. Subjects included individuals with AD (n=234), mild cognitive impairment (MCI, n=542), and healthy controls (HC, n=293). After controlling for sex, education, race/ethnicity, smoking, and apolipoprotein E (APOE) e2/3/4 allele groups, cancer history was protective against baseline AD diagnosis (p=0.042), and was associated with later age of AD onset (p=0.001). Cancer history appears to result in a cumulative protective effect; individuals with more than one cancer had a later age of AD onset compared to those with only one cancer (p=0.001). Finally, a protective effect of AD was also observed in individuals who developed incident cancer after enrolling (post-baseline visit); 20 individuals with MCI and 9 HC developed cancer, while no AD patients had subsequent cancer diagnoses (p=0.013). This supports previous research on the inverse association of cancer and AD, and importantly provides novel evidence that this effect appears to be independent of APOE, the major known genetic risk factor for AD. Future analyses will investigate the neurobiological and genetic basis of this effect.Item Association of cancer history with Alzheimer's disease onset and structural brain changes(2014-10) Nudelman, Kelly N. H.; Risacher, Shannon L.; West, John D.; McDonald, Brenna C.; Gao, Sujuan; Saykin, Andrew J.; Department of Medical and Molecular Genetics, IU School of MedicineEpidemiological studies show a reciprocal inverse association between cancer and Alzheimer's disease (AD). The common mechanistic theory for this effect posits that cells have an innate tendency toward apoptotic or survival pathways, translating to increased risk for either neurodegeneration or cancer. However, it has been shown that cancer patients experience cognitive dysfunction pre- and post-treatment as well as alterations in cerebral gray matter density (GMD) on MRI. To further investigate these issues, we analyzed the association between cancer history (CA±) and age of AD onset, and the relationship between GMD and CA± status across diagnostic groups in the Alzheimer's Disease Neuroimaging Initiative (ADNI) cohort study. Data was analyzed from 1609 participants with information on baseline cancer history and AD diagnosis, age of AD onset, and baseline MRI scans. Participants were CA+ (N = 503) and CA− (N = 1106) diagnosed with AD, mild cognitive impairment (MCI), significant memory concerns (SMC), and cognitively normal older adults. As in previous studies, CA+ was inversely associated with AD at baseline (P = 0.025); interestingly, this effect appears to be driven by non-melanoma skin cancer (NMSC), the largest cancer category in this study (P = 0.001). CA+ was also associated with later age of AD onset (P < 0.001), independent of apolipoprotein E (APOE) ε4 allele status, and individuals with two prior cancers had later mean age of AD onset than those with one or no prior cancer (P < 0.001), suggesting an additive effect. Voxel-based morphometric analysis of GMD showed CA+ had lower GMD in the right superior frontal gyrus compared to CA− across diagnostic groups (Pcrit < 0.001, uncorrected); this cluster of lower GMD appeared to be driven by history of invasive cancer types, rather than skin cancer. Thus, while cancer history is associated with a measurable delay in AD onset independent of APOE ε4, the underlying mechanism does not appear to be cancer-related preservation of GMD.Item Biological Hallmarks of Cancer in Alzheimer’s Disease(Elsevier, 2019-04-16) Nudelman, Kelly N. H.; McDonald, Brenna C.; Lahiri, Debomoy K.; Saykin, Andrew J.; Medical and Molecular Genetics, School of MedicineAlthough Alzheimer’s disease (AD) is an international health research priority for our aging population, little therapeutic progress has been made. This lack of progress may be partially attributable to disease heterogeneity. Previous studies have identified an inverse association of cancer and AD, suggesting that cancer history may be one source of AD heterogeneity. These findings are particularly interesting in light of the number of common risk factors and two-hit models hypothesized to commonly drive both diseases. We reviewed the ten hallmark biological alterations of cancer cells to investigate overlap with the AD literature and identified overlap of all ten hallmarks in AD, including: 1) potentially common underlying risk factors, such as increased inflammation, deregulated cellular energetics, and genome instability, 2) inversely regulated mechanisms, including cell death and evading growth suppressors, and 3) functions with more complex, pleiotropic mechanisms, some of which may be stage-dependent in AD, such as cell adhesion/contact inhibition and angiogenesis. Additionally, we discuss the recent observation of a biological link between cancer and AD neuropathology. Finally, we address the therapeutic implications of this topic. The significant overlap of functional pathways and molecules between these diseases, some similarly and some oppositely regulated or functioning in each disease, supports the need for more research to elucidate cancer-related AD genetic and functional heterogeneity, with the aims of better understanding AD risk mediators, as well as further exploring the potential for some types of drug repurposing towards AD therapeutic development.Item Cerebrospinal fluid biomarkers in the Longitudinal Early-onset Alzheimer's Disease Study(Wiley, 2023) Dage, Jeffrey L.; Eloyan, Ani; Thangarajah, Maryanne; Hammers, Dustin B.; Fagan, Anne M.; Gray, Julia D.; Schindler, Suzanne E.; Snoddy, Casey; Nudelman, Kelly N. H.; Faber, Kelley M.; Foroud, Tatiana; Aisen, Paul; Griffin, Percy; Grinberg, Lea T.; Iaccarino, Leonardo; Kirby, Kala; Kramer, Joel; Koeppe, Robert; Kukull, Walter A.; La Joie, Renaud; Mundada, Nidhi S.; Murray, Melissa E.; Rumbaugh, Malia; Soleimani-Meigooni, David N.; Toga, Arthur W.; Touroutoglou, Alexandra; Vemuri, Prashanthi; Atri, Alireza; Beckett, Laurel A.; Day, Gregory S.; Graff-Radford, Neill R.; Duara, Ranjan; Honig, Lawrence S.; Jones, David T.; Masdeu, Joseph C.; Mendez, Mario F.; Musiek, Erik; Onyike, Chiadi U.; Riddle, Meghan; Rogalski, Emily; Salloway, Stephen; Sha, Sharon J.; Turner, Raymond S.; Wingo, Thomas S.; Wolk, David A.; Womack, Kyle B.; Carrillo, Maria C.; Dickerson, Bradford C.; Rabinovici, Gil D.; Apostolova, Liana G.; LEADS Consortium; Neurology, School of MedicineIntroduction: One goal of the Longitudinal Early Onset Alzheimer's Disease Study (LEADS) is to define the fluid biomarker characteristics of early-onset Alzheimer's disease (EOAD). Methods: Cerebrospinal fluid (CSF) concentrations of Aβ1-40, Aβ1-42, total tau (tTau), pTau181, VILIP-1, SNAP-25, neurogranin (Ng), neurofilament light chain (NfL), and YKL-40 were measured by immunoassay in 165 LEADS participants. The associations of biomarker concentrations with diagnostic group and standard cognitive tests were evaluated. Results: Biomarkers were correlated with one another. Levels of CSF Aβ42/40, pTau181, tTau, SNAP-25, and Ng in EOAD differed significantly from cognitively normal and early-onset non-AD dementia; NfL, YKL-40, and VILIP-1 did not. Across groups, all biomarkers except SNAP-25 were correlated with cognition. Within the EOAD group, Aβ42/40, NfL, Ng, and SNAP-25 were correlated with at least one cognitive measure. Discussion: This study provides a comprehensive analysis of CSF biomarkers in sporadic EOAD that can inform EOAD clinical trial design.Item Cognitive dysfunction in cancer: Neuroimaging and genetic approaches to identify biological mechanisms(2015-04-22) Nudelman, Kelly N. H.; Saykin, Andrew J.; Foroud, Tatiana M.; McDonald, Brenna Cathleen; Schneider, Bryan Paul; Shen, LiAlthough cancer and treatment-associated cognitive dysfunction has been well-documented in the literature, much work remains to elucidate the biological mechanisms driving this effect, hampering current therapeutic efforts. To address this gap, we first reviewed studies utilizing neuroimaging to characterize cognitive dysfunction in cancer, as studies of neurodegenerative diseases point to neuroimaging as a sensitive measure of cognitive dysfunction. This review highlighted the need for longitudinal imaging studies of cancer and treatment-related changes in cerebral structure and function. Subsequently, we utilized multimodal neuroimaging techniques in a female breast cancer cohort to investigate the longitudinal impact of cancer and chemotherapy treatment on cerebral perfusion and gray matter. Our findings indicate that chemotherapy is associated with elevated perfusion, primarily in posterior brain regions, as well as depressed frontal perfusion associated with decreased frontal gray matter density. This pattern of results suggests the involvement of multiple mechanisms of chemotherapy-induced cognitive dysfunction. We also investigated the relationship of cognitive dysfunction and chemotherapy-induced peripheral neuropathy (CIPN), another type of chemotherapy-related nervous system sequelae, again utilizing multimodal, longitudinal neuroimaging, and found that peripheral neuropathy symptoms following chemotherapy were associated with changes in cerebral perfusion and gray matter density. Together, these findings support the hypothesis that multiple biological mechanisms drive cancer and treatment-related cognitive dysfunction. Interestingly, although cancer is associated with cognitive dysfunction, epidemiological studies have shown that cancer and Alzheimer's disease (AD) are inversely correlated. To extend our imaging analysis beyond breast cancer, we leveraged the Alzheimer's Disease Neuroimaging Initiative (ADNI) cohort to investigate the inverse relationship of cancer and AD and investigate the impact of both of these diseases on gray matter density. We found that though the inverse relationship of these diseases was replicated in the ADNI cohort, cancer history was associated with lower gray matter density, similar to findings from breast cancer studies, independent of AD diagnostic group. Finally, we reviewed microRNA studies, as microRNAs are important regulators of many cell signaling pathways and have been actively investigated in relation to both diseases. This review suggests several pathways that may be driving the inverse association and may contribute to cognitive dysfunction.Item Dissociable spatial topography of cortical atrophy in early‐onset and late‐onset Alzheimer's disease: A head‐to‐head comparison of the LEADS and ADNI cohorts(Wiley, 2025) Katsumi, Yuta; Touroutoglou, Alexandra; Brickhouse, Michael; Eloyan, Ani; Eckbo, Ryan; Zaitsev, Alexander; La Joie, Renaud; Lagarde, Julien; Schonhaut, Daniel; Thangarajah, Maryanne; Taurone, Alexander; Vemuri, Prashanthi; Jack, Clifford R., Jr.; Dage, Jeffrey L.; Nudelman, Kelly N. H.; Foroud, Tatiana; Hammers, Dustin B.; Ghetti, Bernardino; Murray, Melissa E.; Newell, Kathy L.; Polsinelli, Angelina J.; Aisen, Paul; Reman, Rema; Beckett, Laurel; Kramer, Joel H.; Atri, Alireza; Day, Gregory S.; Duara, Ranjan; Graff-Radford, Neill R.; Grant, Ian M.; Honig, Lawrence S.; Johnson, Erik C. B.; Jones, David T.; Masdeu, Joseph C.; Mendez, Mario F.; Musiek, Erik; Onyike, Chiadi U.; Riddle, Meghan; Rogalski, Emily; Salloway, Stephen; Sha, Sharon; Turner, R. Scott; Wingo, Thomas S.; Wolk, David A.; Womack, Kyle; Carrillo, Maria C.; Rabinovici, Gil D.; Apostolova, Liana G.; Dickerson, Bradford C.; LEADS Consortium for the Alzheimer's Disease Neuroimaging Initiative; Neurology, School of MedicineIntroduction: Early-onset and late-onset Alzheimer's disease (EOAD and LOAD, respectively) have distinct clinical manifestations, with prior work based on small samples suggesting unique patterns of neurodegeneration. The current study performed a head-to-head comparison of cortical atrophy in EOAD and LOAD, using two large and well-characterized cohorts (LEADS and ADNI). Methods: We analyzed brain structural magnetic resonance imaging (MRI) data acquired from 377 sporadic EOAD patients and 317 sporadicLOAD patients who were amyloid positive and had mild cognitive impairment (MCI) or mild dementia (i.e., early-stage AD), along with cognitively unimpaired participants. Results: After controlling for the level of cognitive impairment, we found a double dissociation between AD clinical phenotype and localization/magnitude of atrophy, characterized by predominant neocortical involvement in EOAD and more focal anterior medial temporal involvement in LOAD. Discussion: Our findings point to the clinical utility of MRI-based biomarkers of atrophy in differentiating between EOAD and LOAD, which may be useful for diagnosis, prognostication, and treatment. Highlights: Early-onset Alzheimer's disease (EOAD) and late-onset AD (LOAD) patients showed distinct and overlapping cortical atrophy patterns. EOAD patients showed prominent atrophy in widespread neocortical regions. LOAD patients showed prominent atrophy in the anterior medial temporal lobe. Regional atrophy was correlated with the severity of global cognitive impairment. Results were comparable when the sample was stratified for mild cognitive impairment (MCI) and dementia.Item Evaluating the impact of chemotherapy-induced peripheral neuropathy symptoms (CIPN-sx) on perceived ability to work in breast cancer survivors during the first year post-treatment.(Springer, 2016) Zanville, Noah R.; Nudelman, Kelly N. H.; Smith, Dori J.; Von Ah, Diane; McDonald, Brenna C.; Champion, Victoria L.; Saykin, Andrew J.; IU School of NursingPurpose: To describe the impact of chemotherapy-induced peripheral neuropathy symptoms (CIPN-sx) on breast cancer survivors’ (BCS) perceived ability to work post-treatment. Methods: The sample included 22 chemotherapy-treated (Ctx+) and 22 chemotherapy-naïve (Ctx−) female BCS. Data was collected at the following three time points: baseline (post-surgery, pre-chemotherapy), 1 month (1 M) post-chemotherapy, and approximately 1 year (1 Y) later. The presence, frequency, number, and severity of CIPN-sx were self-reported using the Functional Assessment of Cancer Therapy/Gynecologic Oncology Group–Neurotoxicity questionnaire (FACT/GOG-Ntx) version 4, a validated 11-item CIPN measure. Perceived ability to work was measured using an item from the Functional Well-Being subscale of the FACT/GOG-Ntx. Results: At 1 Y, more than 50 % of Ctx+ reported discomfort, numbness, or tingling in their hands or feet; weakness; or difficulty feeling small objects. The presence, number, and severity of these symptoms were correlated with being less able to work for Ctx+ at 1 M but not 1 Y. Results of a regression analysis using CIPN-sx to predict work ability found that models combining (1) hand numbness and trouble feeling small objects, (2) trouble buttoning buttons and trouble feeling small objects, (3) foot numbness and foot pain, (4) foot numbness and trouble walking, and (5) trouble hearing and hand pain each predicted survivors who were “not at all” able to work at 1 M. Conclusions: Unresolved CIPN-sx may play a role in challenges working for BCS post-treatment. These findings highlight the need for research to explore the impact that CIPN-sx have on BCS’ ability to work, as well as the development of interventions to improve work function in BCS with CIPN-sx.Item Harnessing peripheral DNA methylation differences in the Alzheimer’s Disease Neuroimaging Initiative (ADNI) to reveal novel biomarkers of disease(Springer, 2020-06-15) Vasanthakumar, Aparna; Davis, Justin W.; Idler, Kenneth; Waring, Jeffrey F.; Asque, Elizabeth; Riley-Gillis, Bridget; Grosskurth, Shaun; Srivastava, Gyan; Kim, Sungeun; Nho, Kwangsik; Nudelman, Kelly N. H.; Faber, Kelley; Sun, Yu; Foroud, Tatiana M.; Estrada, Karol; Apostolova, Liana G.; Li, Qingqin S.; Saykin, Andrew J.; for the Alzheimer’s Disease Neuroimaging Initiative (ADNI); Radiology and Imaging Sciences, School of MedicineBackground Alzheimer’s disease (AD) is a chronic progressive neurodegenerative disease impacting an estimated 44 million adults worldwide. The causal pathology of AD (accumulation of amyloid-beta and tau), precedes hallmark symptoms of dementia by more than a decade, necessitating development of early diagnostic markers of disease onset, particularly for new drugs that aim to modify disease processes. To evaluate differentially methylated positions (DMPs) as novel blood-based biomarkers of AD, we used a subset of 653 individuals with peripheral blood (PB) samples in the Alzheimer’s disease Neuroimaging Initiative (ADNI) consortium. The selected cohort of AD, mild cognitive impairment (MCI), and age-matched healthy controls (CN) all had imaging, genetics, transcriptomics, cerebrospinal protein markers, and comprehensive clinical records, providing a rich resource of concurrent multi-omics and phenotypic information on a well-phenotyped subset of ADNI participants. Results In this manuscript, we report cross-diagnosis differential peripheral DNA methylation in a cohort of AD, MCI, and age-matched CN individuals with longitudinal DNA methylation measurements. Epigenome-wide association studies (EWAS) were performed using a mixed model with repeated measures over time with a P value cutoff of 1 × 10−5 to test contrasts of pairwise differential peripheral methylation in AD vs CN, AD vs MCI, and MCI vs CN. The most highly significant differentially methylated loci also tracked with Mini Mental State Examination (MMSE) scores. Differentially methylated loci were enriched near brain and neurodegeneration-related genes (e.g., BDNF, BIN1, APOC1) validated using the genotype tissue expression project portal (GTex). Conclusions Our work shows that peripheral differential methylation between age-matched subjects with AD relative to healthy controls will provide opportunities to further investigate and validate differential methylation as a surrogate of disease. Given the inaccessibility of brain tissue, the PB-associated methylation marks may help identify the stage of disease and progression phenotype, information that would be central to bringing forward successful drugs for AD.Item Heterogeneous clinical phenotypes of sporadic early-onset Alzheimer's disease: a neuropsychological data-driven approach(Springer Nature, 2025-02-06) Putcha, Deepti; Katsumi, Yuta; Touroutoglou, Alexandra; Eloyan, Ani; Taurone, Alexander; Thangarajah, Maryanne; Aisen, Paul; Dage, Jeffrey L.; Foroud, Tatiana; Jack, Clifford R., Jr.; Kramer, Joel H.; Nudelman, Kelly N. H.; Raman, Rema; Vemuri, Prashanthi; Atri, Alireza; Day, Gregory S.; Duara, Ranjan; Graff-Radford, Neill R.; Grant, Ian M.; Honig, Lawrence S.; Johnson, Erik C. B.; Jones, David T.; Masdeu, Joseph C.; Mendez, Mario F.; Musiek, Erik; Onyike, Chiadi U.; Riddle, Meghan; Rogalski, Emily; Salloway, Stephen; Sha, Sharon; Turner, R. Scott; Wingo, Thomas S.; Wolk, David A.; Womack, Kyle; Carrillo, Maria C.; Rabinovici, Gil D.; Dickerson, Bradford C.; Apostolova, Liana G.; Hammers, Dustin B.; LEADS Consortium; Neurology, School of MedicineBackground: The clinical presentations of early-onset Alzheimer's disease (EOAD) and late-onset Alzheimer's disease are distinct, with EOAD having a more aggressive disease course with greater heterogeneity. Recent publications from the Longitudinal Early-Onset Alzheimer's Disease Study (LEADS) described EOAD as predominantly amnestic, though this phenotypic description was based solely on clinical judgment. To better understand the phenotypic range of EOAD presentation, we applied a neuropsychological data-driven method to subtype the LEADS cohort. Methods: Neuropsychological test performance from 169 amyloid-positive EOAD participants were analyzed. Education-corrected normative comparisons were made using a sample of 98 cognitively normal participants. Comparing the relative levels of impairment between each cognitive domain, we applied a cut-off of 1 SD below all other domain scores to indicate a phenotype of "predominant" impairment in a given cognitive domain. Individuals were otherwise considered to have multidomain impairment. Whole-cortex general linear modeling of cortical atrophy was applied as an MRI-based validation of these distinct clinical phenotypes. Results: We identified 6 phenotypic subtypes of EOAD: Dysexecutive Predominant (22% of sample), Amnestic Predominant (11%), Language Predominant (11%), Visuospatial Predominant (15%), Mixed Amnestic/Dysexecutive Predominant (11%), and Multidomain (30%). These phenotypes did not differ by age, sex, or years of education. The APOE ɛ4 genotype was enriched in the Amnestic Predominant group, who were also rated as least impaired. Cortical thickness analysis validated these clinical phenotypes with dissociations in atrophy patterns observed between the Dysexecutive and Amnestic Predominant groups. In contrast to the heterogeneity observed from our neuropsychological data-driven approach, diagnostic classifications for this same sample based solely on clinical judgment indicated that 82% of individuals were amnestic-predominant, 9% were non-amnestic, 4% met criteria for Posterior Cortical Atrophy, and 5% met criteria for Primary Progressive Aphasia. Conclusion: A neuropsychological data-driven method to phenotype EOAD individuals uncovered a more detailed understanding of the presenting heterogeneity in this atypical AD sample compared to clinical judgment alone. Clinicians and patients may over-report memory dysfunction at the expense of non-memory symptoms. These findings have important implications for diagnostic accuracy and treatment considerations.