- Browse by Author
Browsing by Author "Noble, James M."
Now showing 1 - 10 of 10
Results Per Page
Sort Options
Item 15 Years of Longitudinal Genetic, Clinical, Cognitive, Imaging, and Biochemical Measures in DIAN(medRxiv, 2024-08-09) Daniels, Alisha J.; McDade, Eric; Llibre-Guerra, Jorge J.; Xiong, Chengjie; Perrin, Richard J.; Ibanez, Laura; Supnet-Bell, Charlene; Cruchaga, Carlos; Goate, Alison; Renton, Alan E.; Benzinger, Tammie L. S.; Gordon, Brian A.; Hassenstab, Jason; Karch, Celeste; Popp, Brent; Levey, Allan; Morris, John; Buckles, Virginia; Allegri, Ricardo F.; Chrem, Patricio; Berman, Sarah B.; Chhatwal, Jasmeer P.; Farlow, Martin R.; Fox, Nick C.; Day, Gregory S.; Ikeuchi, Takeshi; Jucker, Mathias; Lee, Jae-Hong; Levin, Johannes; Lopera, Francisco; Takada, Leonel; Sosa, Ana Luisa; Martins, Ralph; Mori, Hiroshi; Noble, James M.; Salloway, Stephen; Huey, Edward; Rosa-Neto, Pedro; Sánchez-Valle, Raquel; Schofield, Peter R.; Roh, Jee Hoon; Bateman, Randall J.; Dominantly Inherited Alzheimer Network; Neurology, School of MedicineThis manuscript describes and summarizes the Dominantly Inherited Alzheimer Network Observational Study (DIAN Obs), highlighting the wealth of longitudinal data, samples, and results from this human cohort study of brain aging and a rare monogenic form of Alzheimer's disease (AD). DIAN Obs is an international collaborative longitudinal study initiated in 2008 with support from the National Institute on Aging (NIA), designed to obtain comprehensive and uniform data on brain biology and function in individuals at risk for autosomal dominant AD (ADAD). ADAD gene mutations in the amyloid protein precursor (APP), presenilin 1 (PSEN1), or presenilin 2 (PSEN2) genes are deterministic causes of ADAD, with virtually full penetrance, and a predictable age at symptomatic onset. Data and specimens collected are derived from full clinical assessments, including neurologic and physical examinations, extensive cognitive batteries, structural and functional neuro-imaging, amyloid and tau pathological measures using positron emission tomography (PET), flurordeoxyglucose (FDG) PET, cerebrospinal fluid and blood collection (plasma, serum, and whole blood), extensive genetic and multi-omic analyses, and brain donation upon death. This comprehensive evaluation of the human nervous system is performed longitudinally in both mutation carriers and family non-carriers, providing one of the deepest and broadest evaluations of the human brain across decades and through AD progression. These extensive data sets and samples are available for researchers to address scientific questions on the human brain, aging, and AD.Item Autosomal dominant and sporadic late onset Alzheimer's disease share a common in vivo pathophysiology(Oxford University Press, 2022) Morris, John C.; Weiner, Michael; Xiong, Chengjie; Beckett, Laurel; Coble, Dean; Saito, Naomi; Aisen, Paul S.; Allegri, Ricardo; Benzinger, Tammie L. S.; Berman, Sarah B.; Cairns, Nigel J.; Carrillo, Maria C.; Chui, Helena C.; Chhatwal, Jasmeer P.; Cruchaga, Carlos; Fagan, Anne M.; Farlow, Martin; Fox, Nick C.; Ghetti, Bernardino; Goate, Alison M.; Gordon, Brian A.; Graff-Radford, Neill; Day, Gregory S.; Hassenstab, Jason; Ikeuchi, Takeshi; Jack, Clifford R.; Jagust, William J.; Jucker, Mathias; Levin, Johannes; Massoumzadeh, Parinaz; Masters, Colin L.; Martins, Ralph; McDade, Eric; Mori, Hiroshi; Noble, James M.; Petersen, Ronald C.; Ringman, John M.; Salloway, Stephen; Saykin, Andrew J.; Schofield, Peter R.; Shaw, Leslie M.; Toga, Arthur W.; Trojanowski, John Q.; Vöglein, Jonathan; Weninger, Stacie; Bateman, Randall J.; Buckles, Virginia D.; Dominantly Inherited Alzheimer Network; Alzheimer’s Disease Neuroimaging and Initiative; Neurology, School of MedicineThe extent to which the pathophysiology of autosomal dominant Alzheimer's disease corresponds to the pathophysiology of 'sporadic' late onset Alzheimer's disease is unknown, thus limiting the extrapolation of study findings and clinical trial results in autosomal dominant Alzheimer's disease to late onset Alzheimer's disease. We compared brain MRI and amyloid PET data, as well as CSF concentrations of amyloid-β42, amyloid-β40, tau and tau phosphorylated at position 181, in 292 carriers of pathogenic variants for Alzheimer's disease from the Dominantly Inherited Alzheimer Network, with corresponding data from 559 participants from the Alzheimer's Disease Neuroimaging Initiative. Imaging data and CSF samples were reprocessed as appropriate to guarantee uniform pipelines and assays. Data analyses yielded rates of change before and after symptomatic onset of Alzheimer's disease, allowing the alignment of the ∼30-year age difference between the cohorts on a clinically meaningful anchor point, namely the participant age at symptomatic onset. Biomarker profiles were similar for both autosomal dominant Alzheimer's disease and late onset Alzheimer's disease. Both groups demonstrated accelerated rates of decline in cognitive performance and in regional brain volume loss after symptomatic onset. Although amyloid burden accumulation as determined by PET was greater after symptomatic onset in autosomal dominant Alzheimer's disease than in late onset Alzheimer's disease participants, CSF assays of amyloid-β42, amyloid-β40, tau and p-tau181 were largely overlapping in both groups. Rates of change in cognitive performance and hippocampal volume loss after symptomatic onset were more aggressive for autosomal dominant Alzheimer's disease participants. These findings suggest a similar pathophysiology of autosomal dominant Alzheimer's disease and late onset Alzheimer's disease, supporting a shared pathobiological construct.Item Contemporary Neuroscience Core Curriculum for Medical Schools(Wolters Kluwer, 2021-10-04) Gelb, Douglas J.; Kraakevik, Jeff; Safdieh, Joseph E.; Agarwal, Sachin; Odia, Yazmin; Govindarajan, Raghav; Quick, Adam; Soni, Madhu; AAN Undergraduate Education Subcommittee (UES); Bickel, Jennifer; Gamaldo, Charlene; Hannon, Peter; Hatch, Hayden A. M.; Hernandez, Christian; Merlin, Lisa R.; Noble, James M.; Reyes-Iglesias, Yolanda; Salas, Rachel Marie E.; Sandness, David James; Treat, Lauren; AAN Education Committee; Benameur, Karima; Brown, Robert D., Jr.; DeLuca, Gabriele C.; Garg, Neeta; Goldstein, Larry B.; Gutmann, Laurie; Henchcliffe, Claire; Hessler, Amy; Jordan, Justin T.; Kilgore, Shannon M.; Khan, Jaffar; Levin, Kerry H.; Mohile, Nimish A.; Nevel, Kathryn S.; Roberts, Kirk; Said, Rana R.; Simpson, Ericka P.; Sirven, Joseph I.; Smith, A. Gordon; Southerland, Andrew Mebane; Wilson, Rujuta B.; Neurology, School of MedicineMedical students need to understand core neuroscience principles as a foundation for their required clinical experiences in neurology. In fact, they need a solid neuroscience foundation for their clinical experiences in all other medical disciplines also because the nervous system plays such a critical role in the function of every organ system. Because of the rapid pace of neuroscience discoveries, it is unrealistic to expect students to master the entire field. It is also unnecessary, as students can expect to have ready access to electronic reference sources no matter where they practice. In the preclerkship phase of medical school, the focus should be on providing students with the foundational knowledge to use those resources effectively and interpret them correctly. This article describes an organizational framework for teaching the essential neuroscience background needed by all physicians. This is particularly germane at a time when many medical schools are reassessing traditional practices and instituting curricular changes such as competency-based approaches, earlier clinical immersion, and increased emphasis on active learning. This article reviews factors that should be considered when developing the preclerkship neuroscience curriculum, including goals and objectives for the curriculum, the general topics to include, teaching and assessment methodology, who should direct the course, and the areas of expertise of faculty who might be enlisted as teachers or content experts. These guidelines were developed by a work group of experienced educators appointed by the Undergraduate Education Subcommittee (UES) of the American Academy of Neurology (AAN). They were then successively reviewed, edited, and approved by the entire UES, the AAN Education Committee, and the AAN Board of Directors.Item Different rates of cognitive decline in autosomal dominant and late-onset Alzheimer disease(Wiley, 2022-10) Buckles, Virginia D.; Xiong , Chengjie; Bateman, Randall J.; Hassenstab, Jason; Allegri, Ricardo; Berman, Sarah B.; Chhatwal, Jasmeer P.; Danek, Adrian; Fagan, Anne M.; Ghetti, Bernardino; Goate, Alison; Graff-Radford, Neill; Jucker, Mathias; Levin, Johannes; Marcus, Daniel S.; Masters, Colin L.; McCue, Lena; McDade, Eric; Mori, Hiroshi; Moulder, Krista L.; Noble, James M.; Paumier , Katrina; Preische, Oliver; Ringman, John M.; Fox, Nick C.; Salloway, Stephen; Schofield, Peter R.; Martins, Ralph; Vöglein, Jonathan; Morris, John C.; Dominantly Inherited Alzheimer Network; Pathology and Laboratory Medicine, School of MedicineAs prevention trials advance with autosomal dominant Alzheimer disease (ADAD) participants, understanding the similarities and differences between ADAD and “sporadic” late-onset AD (LOAD) is critical to determine generalizability of findings between these cohorts. Cognitive trajectories of ADAD mutation carriers (MCs) and autopsy-confirmed LOAD individuals were compared to address this question. Longitudinal rates of change on cognitive measures were compared in ADAD MCs (n=310) and autopsy-confirmed LOAD participants (n=163) before and after symptom onset (estimated/observed). LOAD participants declined more rapidly in the presymptomatic (preclinical) period and performed more poorly at symptom onset than ADAD participants on a cognitive composite. After symptom onset, however, the younger ADAD MCs declined more rapidly. The similar but not identical cognitive trajectories (declining but at different rates) for ADAD and LOAD suggest common AD pathologies but with some differences.Item First presentation with neuropsychiatric symptoms in autosomal dominant Alzheimer's disease: the Dominantly Inherited Alzheimer's Network Study(BMJ, 2023) O'Connor, Antoinette; Rice, Helen; Barnes, Josephine; Ryan, Natalie S.; Liu, Kathy Y.; Allegri, Ricardo Francisco; Berman, Sarah; Ringman, John M.; Cruchaga, Carlos; Farlow, Martin R.; Hassenstab, Jason; Lee, Jae-Hong; Perrin, Richard J.; Xiong, Chengjie; Gordon, Brian; Levey, Allan I.; Goate, Alison; Graff-Radford, Neil; Levin, Johannes; Jucker, Mathias; Benzinger, Tammie; McDade, Eric; Mori, Hiroshi; Noble, James M.; Schofield, Peter R.; Martins, Ralph N.; Salloway, Stephen; Chhatwal, Jasmeer; Morris, John C.; Bateman, Randall; Howard, Rob; Reeves, Suzanne; Fox, Nick C.; Dominantly Inherited Alzheimer Network; Neurology, School of MedicineItem Investigation of sex differences in mutation carriers of the Dominantly Inherited Alzheimer Network(Wiley, 2024) Wagemann, Olivia; Li, Yan; Hassenstab, Jason; Aschenbrenner, Andrew J.; McKay, Nicole S.; Gordon, Brian A.; Benzinger, Tammie L. S.; Xiong, Chengjie; Cruchaga, Carlos; Renton, Alan E.; Perrin, Richard J.; Berman, Sarah B.; Chhatwal, Jasmeer P.; Farlow, Martin R.; Day, Gregory S.; Ikeuchi, Takeshi; Jucker, Mathias; Lopera, Francisco; Mori, Hiroshi; Noble, James M.; Sánchez-Valle, Raquel; Schofield, Peter R.; Morris, John C.; Daniels, Alisha; Levin, Johannes; Bateman, Randall J.; McDade, Eric; Llibre-Guerra, Jorge J.; Dominantly Inherited Alzheimer Network; Neurology, School of MedicineIntroduction: Studies suggest distinct differences in the development, presentation, progression, and response to treatment of Alzheimer's disease (AD) between females and males. We investigated sex differences in cognition, neuroimaging, and fluid biomarkers in dominantly inherited AD (DIAD). Methods: Three hundred twenty-five mutation carriers (55% female) and one hundred eighty-six non-carriers (58% female) of the Dominantly Inherited Alzheimer Network Observational Study were analyzed. Linear mixed models and Spearman's correlation explored cross-sectional sex differences in cognition, cerebrospinal fluid (CSF) biomarkers, Pittsburgh compound B positron emission tomography (11 C-PiB PET) and structural magnetic resonance imaging (MRI). Results: Female carriers performed better than males on delayed recall and processing speed despite similar hippocampal volumes. As the disease progressed, symptomatic females revealed higher increases in MRI markers of neurodegeneration and memory impairment. PiB PET and established CSF AD markers revealed no sex differences. Discussion: Our findings suggest an initial cognitive reserve in female carriers followed by a pronounced increase in neurodegeneration coupled with worse performance on delayed recall at later stages of DIAD.Item Longitudinal Accumulation of Cerebral Microhemorrhages in Dominantly Inherited Alzheimer Disease(American Academy of Neurology, 2021-03-23) Joseph-Mathurin, Nelly; Wang, Guoqiao; Kantarci, Kejal; Jack, Clifford R., Jr.; McDade, Eric; Hassenstab, Jason; Blazey, Tyler M.; Gordon, Brian A.; Su, Yi; Chen, Gengsheng; Massoumzadeh, Parinaz; Hornbeck, Russ C.; Allegri, Ricardo F.; Ances, Beau M.; Berman, Sarah B.; Brickman, Adam M.; Brooks, William S.; Cash, David M.; Chhatwal, Jasmeer P.; Chui, Helena C.; Correia, Stephen; Cruchaga, Carlos; Farlow, Martin R.; Fox, Nick C.; Fulham, Michael; Ghetti, Bernardino; Graff-Radford, Neill R.; Johnson, Keith A.; Karch, Celeste M.; Laske, Christoph; Lee, Athene K.W.; Levin, Johannes; Masters, Colin L.; Noble, James M.; O’Connor, Antoinette; Perrin, Richard J.; Preboske, Gregory M.; Ringman, John M.; Rowe, Christopher C.; Salloway, Stephen; Saykin, Andrew J.; Schofield, Peter R.; Shimada, Hiroyuki; Shoji, Mikio; Suzuki, Kazushi; Villemagne, Victor L.; Xiong, Chengjie; Yakushev, Igor; Morris, John C.; Bateman, Randall J.; Benzinger, Tammie L.S.; Pathology and Laboratory Medicine, School of MedicineObjective: To investigate the inherent clinical risks associated with the presence of cerebral microhemorrhages (CMHs) or cerebral microbleeds and characterize individuals at high risk for developing hemorrhagic amyloid-related imaging abnormality (ARIA-H), we longitudinally evaluated families with dominantly inherited Alzheimer disease (DIAD). Methods: Mutation carriers (n = 310) and noncarriers (n = 201) underwent neuroimaging, including gradient echo MRI sequences to detect CMHs, and neuropsychological and clinical assessments. Cross-sectional and longitudinal analyses evaluated relationships between CMHs and neuroimaging and clinical markers of disease. Results: Three percent of noncarriers and 8% of carriers developed CMHs primarily located in lobar areas. Carriers with CMHs were older, had higher diastolic blood pressure and Hachinski ischemic scores, and more clinical, cognitive, and motor impairments than those without CMHs. APOE ε4 status was not associated with the prevalence or incidence of CMHs. Prevalent or incident CMHs predicted faster change in Clinical Dementia Rating although not composite cognitive measure, cortical thickness, hippocampal volume, or white matter lesions. Critically, the presence of 2 or more CMHs was associated with a significant risk for development of additional CMHs over time (8.95 ± 10.04 per year). Conclusion: Our study highlights factors associated with the development of CMHs in individuals with DIAD. CMHs are a part of the underlying disease process in DIAD and are significantly associated with dementia. This highlights that in participants in treatment trials exposed to drugs, which carry the risk of ARIA-H as a complication, it may be challenging to separate natural incidence of CMHs from drug-related CMHs.Item Pattern and implications of neurological examination findings in autosomal dominant Alzheimer disease(Wiley, 2023) Vöglein, Jonathan; Franzmeier, Nicolai; Morris, John C.; Dieterich, Marianne; McDade, Eric; Simons, Mikael; Preische, Oliver; Hofmann, Anna; Hassenstab, Jason; Benzinger, Tammie L.; Fagan, Anne; Noble, James M.; Berman, Sarah B.; Graff-Radford, Neill R.; Ghetti, Bernardino; Farlow, Martin R.; Chhatwal, Jasmeer P.; Salloway, Stephen; Xiong, Chengjie; Karch, Celeste M.; Cairns, Nigel; Perrin, Richard J.; Day, Gregory; Martins, Ralph; Sanchez-Valle, Raquel; Mori, Hiroshi; Shimada, Hiroyuki; Ikeuchi, Takeshi; Suzuki, Kazushi; Schofield, Peter R.; Masters, Colin L.; Goate, Alison; Buckles, Virginia; Fox, Nick C.; Chrem, Patricio; Allegri, Ricardo; Ringman, John M.; Yakushev, Igor; Laske, Christoph; Jucker, Mathias; Höglinger, Günter; Bateman, Randall J.; Danek, Adrian; Levin, Johannes; Dominantly Inherited Alzheimer Network; Pathology and Laboratory Medicine, School of MedicineIntroduction: As knowledge about neurological examination findings in autosomal dominant Alzheimer disease (ADAD) is incomplete, we aimed to determine the frequency and significance of neurological examination findings in ADAD. Methods: Frequencies of neurological examination findings were compared between symptomatic mutation carriers and non mutation carriers from the Dominantly Inherited Alzheimer Network (DIAN) to define AD neurological examination findings. AD neurological examination findings were analyzed regarding frequency, association with and predictive value regarding cognitive decline, and association with brain atrophy in symptomatic mutation carriers. Results: AD neurological examination findings included abnormal deep tendon reflexes, gait disturbance, pathological cranial nerve examination findings, tremor, abnormal finger to nose and heel to shin testing, and compromised motor strength. The frequency of AD neurological examination findings was 65.1%. Cross-sectionally, mutation carriers with AD neurological examination findings showed a more than two-fold faster cognitive decline and had greater parieto-temporal atrophy, including hippocampal atrophy. Longitudinally, AD neurological examination findings predicted a significantly greater decline over time. Discussion: ADAD features a distinct pattern of neurological examination findings that is useful to estimate prognosis and may inform clinical care and therapeutic trial designs.Item Serum neurofilament dynamics predicts neurodegeneration and clinical progression in presymptomatic Alzheimer's disease(Nature Research, 2019-02) Preische, Oliver; Schultz, Stephanie A.; Apel, Anja; Kuhle, Jens; Kaeser, Stephan A.; Barro, Christian; Gräber, Susanne; Kuder-Buletta, Elke; LaFougere, Christian; Laske, Christoph; Vöglein, Jonathan; Levin, Johannes; Masters, Colin L.; Martins, Ralph; Schofield, Peter R.; Rossor, Martin N.; Graff-Radford, Neill R.; Salloway, Stephen; Ghetti, Bernardino; Ringman, John M.; Noble, James M.; Chhatwal, Jasmeer; Goate, Alison M.; Benzinger, Tammie L. S.; Morris, John C.; Bateman, Randall J.; Wang, Guoqiao; Fagan, Anne M.; McDade, Eric M.; Gordon, Brian A.; Jucker, Mathias; Alzheimer Network; Allegri, Ricardo; Amtashar, Fatima; Bateman, Randall; Benzinger, Tammie; Berman, Sarah; Bodge, Courtney; Brandon, Susan; Brooks, William; Buck, Jill; Buckles, Virginia; Chea, Sochenda; Chhatwal, Jasmeer; Chrem, Patricio; Chui, Helena; Cinco, Jake; Clifford, Jack; Cruchaga, Carlos; D’Mello, Mirelle; Donahue, Tamara; Douglas, Jane; Edigo, Noelia; Erekin-Taner, Nilufer; Fagan, Anne; Farlow, Marty; Farrar, Angela; Feldman, Howard; Flynn, Gigi; Fox, Nick; Franklin, Erin; Fujii, Hisako; Gant, Cortaiga; Gardener, Samantha; Ghetti, Bernardino; Goate, Alison; Goldman, Jill; Gordon, Brian; Graff-Radford, Neill; Gray, Julia; Gurney, Jenny; Hassenstab, Jason; Hirohara, Mie; Holtzman, David; Hornbeck, Russ; DiBari, Siri Houeland; Ikeuchi, Takeshi; Ikonomovic, Snezana; Jerome, Gina; Jucker, Mathias; Karch, Celeste; Kasuga, Kensaku; Kawarabayashi, Takeshi; Klunk, William; Koeppe, Robert; Kuder-Buletta, Elke; Laske, Christoph; Lee, Jae-Hong; Levin, Johannes; Marcus, Daniel; Martins, Ralph; Mason, Neal Scott; Masters, Colin; Maue-Dreyfus, Denise; McDade, Eric; Montoya, Lucy; Mori, Hiroshi; Morris, John; Nagamatsu, Akem; Neimeyer, Katie; Noble, James; Norton, Joanne; Perrin, Richard; Raichle, Marc; Ringman, John; Roh, Jee Hoon; Salloway, Stephen; Schofield, Peter; Shimada, Hiroyuki; Shiroto, Tomoyo; Shoji, Mikio; Sigurdson, Wendy; Sohrabi, Hamid; Sparks, Paige; Suzuki, Kazushi; Swisher, Laura; Taddei, Kevin; Wang, Jen; Wang, Peter; Weiner, Mike; Wolfsberger, Mary; Xiong, Chengjie; Xu, Xiong; Pathology and Laboratory Medicine, School of MedicineNeurofilament light chain (NfL) is a promising fluid biomarker of disease progression for various cerebral proteopathies. Here we leverage the unique characteristics of the Dominantly Inherited Alzheimer Network and ultrasensitive immunoassay technology to demonstrate that NfL levels in the cerebrospinal fluid (n = 187) and serum (n = 405) are correlated with one another and are elevated at the presymptomatic stages of familial Alzheimer's disease. Longitudinal, within-person analysis of serum NfL dynamics (n = 196) confirmed this elevation and further revealed that the rate of change of serum NfL could discriminate mutation carriers from non-mutation carriers almost a decade earlier than cross-sectional absolute NfL levels (that is, 16.2 versus 6.8 years before the estimated symptom onset). Serum NfL rate of change peaked in participants converting from the presymptomatic to the symptomatic stage and was associated with cortical thinning assessed by magnetic resonance imaging, but less so with amyloid-β deposition or glucose metabolism (assessed by positron emission tomography). Serum NfL was predictive for both the rate of cortical thinning and cognitive changes assessed by the Mini-Mental State Examination and Logical Memory test. Thus, NfL dynamics in serum predict disease progression and brain neurodegeneration at the early presymptomatic stages of familial Alzheimer's disease, which supports its potential utility as a clinically useful biomarker.Item Utility of perfusion PET measures to assess neuronal injury in Alzheimer's disease(Elsevier, 2018-09-27) Joseph-Mathurin, Nelly; Su, Yi; Blazey, Tyler M.; Jasielec, Mateusz; Vlassenko, Andrei; Friedrichsen, Karl; Gordon, Brian A.; Hornbeck, Russ C.; Cash, Lisa; Ances, Beau M.; Veale, Thomas; Cash, David M.; Brickman, Adam M.; Buckles, Virginia; Cairns, Nigel J.; Cruchaga, Carlos; Goate, Alison; Jack, Clifford R., Jr.; Karch, Celeste; Klunk, William; Koeppe, Robert A.; Marcus, Daniel S.; Mayeux, Richard; McDade, Eric; Noble, James M.; Ringman, John; Saykin, Andrew J.; Thompson, Paul M.; Xiong, Chengjie; Morris, John C.; Bateman, Randall J.; Benzinger, Tammie L. S.; Dominantly Inherited Alzheimer Network; Radiology and Imaging Sciences, School of MedicineIntroduction: 18F-fluorodeoxyglucose (FDG) positron emission tomography (PET) is commonly used to estimate neuronal injury in Alzheimer's disease (AD). Here, we evaluate the utility of dynamic PET measures of perfusion using 11C-Pittsburgh compound B (PiB) to estimate neuronal injury in comparison to FDG PET. Methods: FDG, early frames of PiB images, and relative PiB delivery rate constants (PiB-R1) were obtained from 110 participants from the Dominantly Inherited Alzheimer Network. Voxelwise, regional cross-sectional, and longitudinal analyses were done to evaluate the correlation between images and estimate the relationship of the imaging biomarkers with estimated time to disease progression based on family history. Results: Metabolism and perfusion images were spatially correlated. Regional PiB-R1 values and FDG, but not early frames of PiB images, significantly decreased in the mutation carriers with estimated year to onset and with increasing dementia severity. Discussion: Hypometabolism estimated by PiB-R1 may provide a measure of brain perfusion without increasing radiation exposure.