- Browse by Author
Browsing by Author "Nho, Kwangsik"
Now showing 1 - 10 of 176
Results Per Page
Sort Options
Item A simulative deep learning model of SNP interactions on chromosome 19 for predicting Alzheimer’s disease risk and rates of disease progression(Wiley, 2023) Bae, Jinhyeong; Logan, Paige E.; Acri, Dominic J.; Bharthur, Apoorva; Nho, Kwangsik; Saykin, Andrew J.; Risacher, Shannon L.; Nudelman, Kelly; Polsinelli, Angelina J.; Pentchev, Valentin; Kim, Jungsu; Hammers, Dustin B.; Apostolova, Liana G.; Alzheimer’s Disease Neuroimaging Initiative; Neurology, School of MedicineBackground: Identifying genetic patterns that contribute to Alzheimer's disease (AD) is important not only for pre-symptomatic risk assessment but also for building personalized therapeutic strategies. Methods: We implemented a novel simulative deep learning model to chromosome 19 genetic data from the Alzheimer's Disease Neuroimaging Initiative and the Imaging and Genetic Biomarkers of Alzheimer's Disease datasets. The model quantified the contribution of each single nucleotide polymorphism (SNP) and their epistatic impact on the likelihood of AD using the occlusion method. The top 35 AD-risk SNPs in chromosome 19 were identified, and their ability to predict the rate of AD progression was analyzed. Results: Rs561311966 (APOC1) and rs2229918 (ERCC1/CD3EAP) were recognized as the most powerful factors influencing AD risk. The top 35 chromosome 19 AD-risk SNPs were significant predictors of AD progression. Discussion: The model successfully estimated the contribution of AD-risk SNPs that account for AD progression at the individual level. This can help in building preventive precision medicine.Item Aberrant GAP43 Gene Expression Is Alzheimer Disease Pathology-Specific(Wiley, 2023) Pyun, Jung-Min; Park, Young Ho; Wang, Jiebiao; Bice, Paula J.; Bennett, David A.; Kim, Sang Yun; Saykin, Andrew J.; Nho, Kwangsik; Radiology and Imaging Sciences, School of MedicineItem ADAS-viewer: web-based application for integrative analysis of multi-omics data in Alzheimer’s disease(Springer Nature, 2021-03-19) Han, Seonggyun; Shin, Jaehang; Jung, Hyeim; Ryu, Jane; Minassie, Habtamu; Nho, Kwangsik; Koh, Insong; Lee, Younghee; Radiology and Imaging Sciences, School of MedicineAlzheimer’s disease (AD) is a neurodegenerative disorder and is represented by complicated biological mechanisms and complexity of brain tissue. Our understanding of the complicated molecular architecture that contributes to AD progression benefits from performing comprehensive and systemic investigations with multi-layered molecular and biological data from different brain regions. Since recently different independent studies generated various omics data in different brain regions of AD patients, multi-omics data integration can be a useful resource for better comprehensive understanding of AD. Here we present a web platform, ADAS-viewer, that provides researchers with the ability to comprehensively investigate and visualize multi-omics data from multiple brain regions of AD patients. ADAS-viewer offers means to identify functional changes in transcript and exon expression (i.e., alternative splicing) along with associated genetic or epigenetic regulatory effects. Specifically, it integrates genomic, transcriptomic, methylation, and miRNA data collected from seven different brain regions (cerebellum, temporal cortex, dorsolateral prefrontal cortex, frontal pole, inferior frontal gyrus, parahippocampal gyrus, and superior temporal gyrus) across three independent cohort datasets. ADAS-viewer is particularly useful as a web-based application for analyzing and visualizing multi-omics data across multiple brain regions at both transcript and exon level, allowing the identification of candidate biomarkers of Alzheimer’s disease.Item Adult neurogenesis and neurodegenerative diseases: A systems biology perspective(Wiley, 2017-01) Horgusluoglu, Emrin; Nudelman, Kelly; Nho, Kwangsik; Saykin, Andrew J.; Medical and Molecular Genetics, School of MedicineNew neurons are generated throughout adulthood in two regions of the brain, the olfactory bulb and dentate gyrus of the hippocampus, and are incorporated into the hippocampal network circuitry; disruption of this process has been postulated to contribute to neurodegenerative diseases including Alzheimer's disease and Parkinson's disease. Known modulators of adult neurogenesis include signal transduction pathways, the vascular and immune systems, metabolic factors, and epigenetic regulation. Multiple intrinsic and extrinsic factors such as neurotrophic factors, transcription factors, and cell cycle regulators control neural stem cell proliferation, maintenance in the adult neurogenic niche, and differentiation into mature neurons; these factors act in networks of signaling molecules that influence each other during construction and maintenance of neural circuits, and in turn contribute to learning and memory. The immune system and vascular system are necessary for neuronal formation and neural stem cell fate determination. Inflammatory cytokines regulate adult neurogenesis in response to immune system activation, whereas the vasculature regulates the neural stem cell niche. Vasculature, immune/support cell populations (microglia/astrocytes), adhesion molecules, growth factors, and the extracellular matrix also provide a homing environment for neural stem cells. Epigenetic changes during hippocampal neurogenesis also impact memory and learning. Some genetic variations in neurogenesis related genes may play important roles in the alteration of neural stem cells differentiation into new born neurons during adult neurogenesis, with important therapeutic implications. In this review, we discuss mechanisms of and interactions between these modulators of adult neurogenesis, as well as implications for neurodegenerative disease and current therapeutic research.Item Alpha-synuclein (SNCA) polymorphisms exert protective effects on memory after mild traumatic brain injury(Elsevier, 2016-09-06) Shee, Kevin; Lucas, Alexandra; Flashman, Laura A.; Nho, Kwangsik; Tsongalis, Gregory J.; McDonald, Brenna C.; Saykin, Andrew J.; McAllister, Thomas W.; Rhodes, C. Harker; Psychiatry, School of MedicineProblems with attention and short-term learning and memory are commonly reported after mild traumatic brain injury (mTBI). Due to the known relationships between α-synuclein (SNCA), dopaminergic transmission, and neurologic deficits, we hypothesized that SNCA polymorphisms might be associated with cognitive outcome after mTBI. A cohort of 91 mTBI patients one month after injury and 86 healthy controls completed a series of cognitive tests assessing baseline intellectual function, attentional function, and memory, and was genotyped at 13 common single nucleotide polymorphisms (SNPs) in the SNCA gene. Significant differences in two memory measures (p = 0.001 and 0.002), but not baseline intellectual function or attentional function tasks, were found between the mTBI group and controls. A highly significant protective association between memory performance and SNCA promoter SNP rs1372525 was observed in the mTBI patients (p = 0.006 and 0.029 for the long and short delay conditions of the California Verbal Learning Tests, respectively), where the presence of at least one copy of the A (minor) allele was protective after mTBI. These results may help elucidate the pathophysiology of cognitive alterations after mTBI, and thus warrant further investigation.Item Altered bile acid profile associates with cognitive impairment in Alzheimer's disease—An emerging role for gut microbiome(Elsevier, 2019-01) MahmoudianDehkordi, Siamak; Arnold, Matthias; Nho, Kwangsik; Ahmad, Shahzad; Jia, Wei; Xie, Guoxiang; Louie, Gregory; Kueider‐Paisley, Alexandra; Moseley, M. Arthur; Thompson, J. Will; St John Williams, Lisa; Tenenbaum, Jessica D.; Blach, Colette; Baillie, Rebecca; Han, Xianlin; Bhattacharyya, Sudeepa; Toledo, Jon B.; Schafferer, Simon; Klein, Sebastian; Koal, Therese; Risacher, Shannon L.; Kling, Mitchel Allan; Motsinger‐Reif, Alison; Rotroff, Daniel M.; Jack, John; Hankemeier, Thomas; Bennett, David A.; De Jager, Philip L.; Trojanowski, John Q.; Shaw, Leslie M.; Weiner, Michael W.; Doraiswamy, P. Murali; van Duijn, Cornelia M.; Saykin, Andrew J.; Kastenmüller, Gabi; Kaddurah‐Daouk, Rima; Radiology and Imaging Sciences, School of MedicineIntroduction Increasing evidence suggests a role for the gut microbiome in central nervous system disorders and a specific role for the gut‐brain axis in neurodegeneration. Bile acids (BAs), products of cholesterol metabolism and clearance, are produced in the liver and are further metabolized by gut bacteria. They have major regulatory and signaling functions and seem dysregulated in Alzheimer's disease (AD). Methods Serum levels of 15 primary and secondary BAs and their conjugated forms were measured in 1464 subjects including 370 cognitively normal older adults, 284 with early mild cognitive impairment, 505 with late mild cognitive impairment, and 305 AD cases enrolled in the AD Neuroimaging Initiative. We assessed associations of BA profiles including selected ratios with diagnosis, cognition, and AD‐related genetic variants, adjusting for confounders and multiple testing. Results In AD compared to cognitively normal older adults, we observed significantly lower serum concentrations of a primary BA (cholic acid [CA]) and increased levels of the bacterially produced, secondary BA, deoxycholic acid, and its glycine and taurine conjugated forms. An increased ratio of deoxycholic acid:CA, which reflects 7α‐dehydroxylation of CA by gut bacteria, strongly associated with cognitive decline, a finding replicated in serum and brain samples in the Rush Religious Orders and Memory and Aging Project. Several genetic variants in immune response–related genes implicated in AD showed associations with BA profiles. Discussion We report for the first time an association between altered BA profile, genetic variants implicated in AD, and cognitive changes in disease using a large multicenter study. These findings warrant further investigation of gut dysbiosis and possible role of gut‐liver‐brain axis in the pathogenesis of AD.Item Altered bile acid profile in mild cognitive impairment and Alzheimer's disease: Relationship to neuroimaging and CSF biomarkers(Elsevier, 2019-02) Nho, Kwangsik; Kueider-Paisley, Alexandra; MahmoudianDehkordi, Siamak; Arnold, Matthias; Risacher, Shannon L.; Louie, Gregory; Blach, Colette; Baillie, Rebecca; Han, Xianlin; Kastenmüller, Gabi; Jia, Wei; Xie, Guoxiang; Ahmad, Shahzad; Hankemeier, Thomas; van Duijn, Cornelia M.; Trojanowski, John Q.; Shaw, Leslie M.; Weiner, Michael W.; Doraiswamy, P. Murali; Saykin, Andrew J.; Kaddurah-Daouk, Rima; Radiology and Imaging Sciences, School of MedicineINTRODUCTION: Bile acids (BAs) are the end products of cholesterol metabolism produced by human and gut microbiome co-metabolism. Recent evidence suggests gut microbiota influence pathological features of Alzheimer's disease (AD) including neuroinflammation and amyloid-β deposition. METHOD: Serum levels of 20 primary and secondary BA metabolites from the AD Neuroimaging Initiative (n = 1562) were measured using targeted metabolomic profiling. We assessed the association of BAs with the "A/T/N" (amyloid, tau, and neurodegeneration) biomarkers for AD: cerebrospinal fluid (CSF) biomarkers, atrophy (magnetic resonance imaging), and brain glucose metabolism ([18F]FDG PET). RESULTS: Of 23 BAs and relevant calculated ratios after quality control procedures, three BA signatures were associated with CSF Aβ1-42 ("A") and three with CSF p-tau181 ("T") (corrected P < .05). Furthermore, three, twelve, and fourteen BA signatures were associated with CSF t-tau, glucose metabolism, and atrophy ("N"), respectively (corrected P < .05). DISCUSSION: This is the first study to show serum-based BA metabolites are associated with "A/T/N" AD biomarkers, providing further support for a role of BA pathways in AD pathophysiology. Prospective clinical observations and validation in model systems are needed to assess causality and specific mechanisms underlying this association.Item Alternative Splicing Regulation of an Alzheimer’s Risk Variant in CLU(MDPI, 2020-09-25) Han, Seonggyun; Nho, Kwangsik; Lee, Younghee; Radiology and Imaging Sciences, School of MedicineClusterin (CLU) is one of the risk genes most associated with late onset Alzheimer’s disease (AD), and several genetic variants in CLU are associated with AD risk. However, the functional role of known AD risk genetic variants in CLU has been little explored. We investigated the effect of an AD risk variant (rs7982) in the 5th exon of CLU on alternative splicing by using an integrative approach of brain-tissue-based RNA-Seq and whole genome sequencing data from Accelerating Medicines Partnership—Alzheimer’s Disease (AMP-AD). RNA-Seq data were generated from three regions in the temporal lobe of the brain—the temporal cortex, superior temporal gyrus, and parahippocampal gyrus. The rs7982 was significantly associated with intron retention (IR) of the 5th exon of CLU; as the number of alternative alleles (G) increased, the IR rates decreased more significantly in females than in males. Our results suggest a sex-dependent role of rs7982 in AD pathogenesis via splicing regulation.Item Alternative Splicing Regulation of Low-Frequency Genetic Variants in Exon 2 of TREM2 in Alzheimer's Disease by Splicing-Based Aggregation(MDPI, 2021-09-13) Han, Seonggyun; Na, Yirang; Koh, Insong; Nho, Kwangsik; Lee, Younghee; Radiology and Imaging Sciences, School of MedicineTREM2 is among the most well-known Alzheimer’s disease (AD) risk genes; however, the functional roles of its AD-associated variants remain to be elucidated, and most known risk alleles are low-frequency variants whose investigation is challenging. Here, we utilized a splicing-guided aggregation method in which multiple low-frequency TREM2 variants were bundled together to investigate the functional impact of those variants on alternative splicing in AD. We analyzed whole genome sequencing (WGS) and RNA-seq data generated from cognitively normal elderly controls (CN) and AD patients in two independent cohorts, representing three regions in the frontal lobe of the human brain: the dorsolateral prefrontal cortex (CN = 213 and AD = 376), frontal pole (CN = 72 and AD = 175), and inferior frontal (CN = 63 and AD = 157). We observed an exon skipping event in the second exon of TREM2, with that exon tending to be more frequently skipped (p = 0.0012) in individuals having at least one low-frequency variant that caused loss-of-function for a splicing regulatory element. In addition, genes differentially expressed between AD patients with high vs. low skipping of the second exon (i.e., loss of a TREM2 functional domain) were significantly enriched in immune-related pathways. Our splicing-guided aggregation method thus provides new insight into the regulation of alternative splicing of the second exon of TREM2 by low-frequency variants and could be a useful tool for further exploring the potential molecular mechanisms of multiple, disease-associated, low-frequency variants.Item Alzheimer's disease genetic risk variants beyond APOE ε4 predict mortality(Elsevier, 2017-08-24) Mez, Jesse; Marden, Jessica R.; Mukherjee, Shubhabrata; Walter, Stefan; Gibbons, Laura E.; Gross, Alden L.; Zahodne, Laura B.; Gilsanz, Paola; Brewster, Paul; Nho, Kwangsik; Crane, Paul K.; Larson, Eric B.; Glymour, M. Maria; Radiology and Imaging Sciences, School of Medicine• A genetic risk score from 21 non-APOE late-onset Alzheimer's disease risk variants predicts mortality. • The genetic risk score likely confers risk for mortality through its effect on dementia incidence. • Late-onset Alzheimer's disease risk loci effect estimates from genome-wide association unlikely suffer from selection bias.