- Browse by Author
Browsing by Author "Ng, Yen"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Equivalence of arterial and venous blood for [11C]CO2-metabolite analysis following intravenous administration of 1-[11C]acetate and 1-[11C]palmitate(Elsevier, 2013-04) Ng, Yen; Moberly, Steven P.; Mather, Kieren J.; Brown-Proctor, Clive; Hutchins, Gary D.; Green, Mark A.; Department of Cellular & Integrative Physiology, IU School of MedicinePURPOSE: Sampling of arterial blood for metabolite correction is often required to define a true radiotracer input function in quantitative modeling of PET data. However, arterial puncture for blood sampling is often undesirable. To establish whether venous blood could substitute for arterial blood in metabolite analysis for quantitative PET studies with 1-[(11)C]acetate and 1-[(11)C]palmitate, we compared the results of [(11)C]CO2-metabolite analyses performed on simultaneously collected arterial and venous blood samples. METHODS: Paired arterial and venous blood samples were drawn from anesthetized pigs at 1, 3, 6, 8, 10, 15, 20, 25 and 30min after i.v. administration of 1-[(11)C]acetate and 1-[(11)C]palmitate. Blood radioactivity present as [(11)C]CO2 was determined employing a validated 10-min gas-purge method. Briefly, total blood (11)C radioactivity was counted in base-treated [(11)C]-blood samples, and non-[(11)C]CO2 radioactivity was counted after the [(11)C]-blood was acidified using 6N HCl and bubbled with air for 10min to quantitatively remove [(11)C]CO2. RESULTS: An excellent correlation was found between concurrent arterial and venous [(11)C]CO2 levels. For the [(11)C]acetate study, the regression equation derived to estimate the venous [(11)C]CO2 from the arterial values was: y=0.994x+0.004 (r(2)=0.97), and for the [(11)C]palmitate: y=0.964x-0.001 (r(2)=0.9). Over the 1-30min period, the fraction of total blood (11)C present as [(11)C]CO2 rose from 4% to 64% for acetate, and 0% to 24% for palmitate. The rate of [(11)C]CO2 appearance in venous blood appears similar for the pig model and humans following i.v. [(11)C]-acetate administration. CONCLUSION: Venous blood [(11)C]CO2 values appear suitable as substitutes for arterial blood samples in [(11)C]CO2 metabolite analysis after administration of [(11)C]acetate or [(11)C]palmitate ADVANCES IN KNOWLEDGE AND IMPLICATIONS FOR PATIENT CARE: Quantitative PET studies employing 1-[(11)C]acetate and 1-[(11)C]palmitate can employ venous blood samples for metabolite correction of an image-derived tracer arterial input function, thereby avoiding the risks of direct arterial blood sampling.Item Performance of a 62Zn/62Cu microgenerator in kit-based synthesis and delivery of [62Cu]Cu–ETS for PET perfusion imaging(Elsevier B.V., 2014-09) Ng, Yen; Lacy, Jeffrey L.; Fletcher, James W.; Green, Mark A.; Department of Radiology and Imaging Sciences, IU School of MedicineThe performance of a commercially produced 62Zn/62Cu microgenerator system, and an associated kit-based radiopharmaceutical synthesis method, was evaluated for clinical site production of [62Cu]Cu-ETS (ethylglyoxal bis(thiosemicarbazonato)copper(II)), an investigational agent for PET perfusion imaging. Using 37 generators, containing 1.84 ± 0.23 GBq 62Zn at 9:00 AM on the day of clinical use, a total of 45 patient doses of [62Cu]Cu-ETS (672 ± 172 MBq) were delivered without difficulty. 62Cu elution yields were high (approximately 90%), accompanied by extremely low 62Zn breakthrough (<0.001%). Radiopharmaceutical preparation, from the start-of-elution to time-of-injection, consumed less than five minutes. The 62Zn/62Cu microgenerator was a dependable source of short-lived positron-emitting 62Cu, and the kit-based synthesis proved to be rapid, robust, and highly reliable for “on-demand” delivery of [62Cu]Cu-ETS for PET perfusion imaging.