- Browse by Author
Browsing by Author "Neale, Benjamin"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Ancestry May Confound Genetic Machine Learning: Candidate-Gene Prediction of Opioid Use Disorder as an Example(Elsevier, 2021) Hatoum, Alexander S.; Wendt, Frank R.; Galimberti, Marco; Polimanti, Renato; Neale, Benjamin; Kranzler, Henry R.; Gelernter, Joel; Edenberg, Howard J.; Agrawal, Arpana; Medical and Molecular Genetics, School of MedicineBackground: Machine learning (ML) models are beginning to proliferate in psychiatry, however machine learning models in psychiatric genetics have not always accounted for ancestry. Using an empirical example of a proposed genetic test for OUD, and exploring a similar test for tobacco dependence and a simulated binary phenotype, we show that genetic prediction using ML is vulnerable to ancestral confounding. Methods: We utilize five ML algorithms trained with 16 brain reward-derived "candidate" SNPs proposed for commercial use and examine their ability to predict OUD vs. ancestry in an out-of-sample test set (N = 1000, stratified into equal groups of n = 250 cases and controls each of European and African ancestry). We rerun analyses with 8 random sets of allele-frequency matched SNPs. We contrast findings with 11 genome-wide significant variants for tobacco smoking. To document generalizability, we generate and test a random phenotype. Results: None of the 5 ML algorithms predict OUD better than chance when ancestry was balanced but were confounded with ancestry in an out-of-sample test. In addition, the algorithms preferentially predicted admixed subpopulations. Random sets of variants matched to the candidate SNPs by allele frequency produced similar bias. Genome-wide significant tobacco smoking variants were also confounded by ancestry. Finally, random SNPs predicting a random simulated phenotype show that the bias attributable to ancestral confounding could impact any ML-based genetic prediction. Conclusions: Researchers and clinicians are encouraged to be skeptical of claims of high prediction accuracy from ML-derived genetic algorithms for polygenic traits like addiction, particularly when using candidate variants.Item FAVOR: functional annotation of variants online resource and annotator for variation across the human genome(Oxford University Press, 2023) Zhou, Hufeng; Arapoglou, Theodore; Li, Xihao; Li, Zilin; Zheng, Xiuwen; Moore, Jill; Asok, Abhijith; Kumar, Sushant; Blue, Elizabeth E.; Buyske, Steven; Cox, Nancy; Felsenfeld, Adam; Gerstein, Mark; Kenny, Eimear; Li, Bingshan; Matise, Tara; Philippakis, Anthony; Rehm, Heidi L.; Sofia, Heidi J.; Snyder, Grace; NHGRI Genome Sequencing Program Variant Functional Annotation Working Group; Weng, Zhiping; Neale, Benjamin; Sunyaev, Shamil R.; Lin, Xihong; Biostatistics, School of Public HealthLarge biobank-scale whole genome sequencing (WGS) studies are rapidly identifying a multitude of coding and non-coding variants. They provide an unprecedented resource for illuminating the genetic basis of human diseases. Variant functional annotations play a critical role in WGS analysis, result interpretation, and prioritization of disease- or trait-associated causal variants. Existing functional annotation databases have limited scope to perform online queries and functionally annotate the genotype data of large biobank-scale WGS studies. We develop the Functional Annotation of Variants Online Resources (FAVOR) to meet these pressing needs. FAVOR provides a comprehensive multi-faceted variant functional annotation online portal that summarizes and visualizes findings of all possible nine billion single nucleotide variants (SNVs) across the genome. It allows for rapid variant-, gene- and region-level queries of variant functional annotations. FAVOR integrates variant functional information from multiple sources to describe the functional characteristics of variants and facilitates prioritizing plausible causal variants influencing human phenotypes. Furthermore, we provide a scalable annotation tool, FAVORannotator, to functionally annotate large-scale WGS studies and efficiently store the genotype and their variant functional annotation data in a single file using the annotated Genomic Data Structure (aGDS) format, making downstream analysis more convenient. FAVOR and FAVORannotator are available at https://favor.genohub.org.