- Browse by Author
Browsing by Author "Nadeau, Kristen J."
Now showing 1 - 10 of 14
Results Per Page
Sort Options
Item Baseline leptin predicts response to metformin in adolescents with type 1 diabetes and increased body mass index(Wiley, 2023) Ismail, Heba M.; Barua, Souptik; Wang, Johnny; Sabharwal, Ashutosh; Libman, Ingrid; Bacha, Fida; Nadeau, Kristen J.; Tosur, Mustafa; Redondo, Maria J.; Pediatrics, School of MedicineItem Baseline Predictors of Glycemic Worsening in Youth and Adults With Impaired Glucose Tolerance or Recently Diagnosed Type 2 Diabetes in the Restoring Insulin Secretion (RISE) Study(American Diabetes Association, 2021) Sam, Susan; Edelstein, Sharon L.; Arslanian, Silva A.; Barengolts, Elena; Buchanan, Thomas A.; Caprio, Sonia; Ehrmann, David A.; Hannon, Tamara S.; Hogan Tjaden, Ashley; Kahn, Steven E.; Mather, Kieren J.; Tripputi, Mark; Utzschneider, Kristina M.; Xiang, Anny H.; Nadeau, Kristen J.; The RISE Consortium; Pediatrics, School of MedicineObjective: To identify predictors of glycemic worsening among youth and adults with impaired glucose tolerance (IGT) or recently diagnosed type 2 diabetes in the Restoring Insulin Secretion (RISE) Study. Research design and methods: A total of 91 youth (10-19 years) were randomized 1:1 to 12 months of metformin (MET) or 3 months of glargine, followed by 9 months of metformin (G-MET), and 267 adults were randomized to MET, G-MET, liraglutide plus MET (LIRA+MET), or placebo for 12 months. All participants underwent a baseline hyperglycemic clamp and a 3-h oral glucose tolerance test (OGTT) at baseline, month 6, month 12, and off treatment at month 15 and month 21. Cox models identified baseline predictors of glycemic worsening (HbA1c increase ≥0.5% from baseline). Results: Glycemic worsening occurred in 17.8% of youth versus 7.5% of adults at month 12 (P = 0.008) and in 36% of youth versus 20% of adults at month 21 (P = 0.002). In youth, glycemic worsening did not differ by treatment. In adults, month 12 glycemic worsening was less on LIRA+MET versus placebo (hazard ratio 0.21, 95% CI 0.05-0.96, P = 0.044). In both age-groups, lower baseline clamp-derived β-cell responses predicted month 12 and month 21 glycemic worsening (P < 0.01). Lower baseline OGTT-derived β-cell responses predicted month 21 worsening (P < 0.05). In youth, higher baseline HbA1c and 2-h glucose predicted month 12 and month 21 glycemic worsening, and higher fasting glucose predicted month 21 worsening (P < 0.05). In adults, lower clamp- and OGTT-derived insulin sensitivity predicted month 12 and month 21 worsening (P < 0.05). Conclusions: Glycemic worsening was more common among youth than adults with IGT or recently diagnosed type 2 diabetes, predicted by lower baseline β-cell responses in both groups, hyperglycemia in youth, and insulin resistance in adults.Item Differential loss of β-cell function in youth vs. adults following treatment withdrawal in the Restoring Insulin Secretion (RISE) study(Elsevier, 2021) Utzschneider, Kristina M.; Tripputi, Mark T.; Kozedub, Alexandra; Barengolts, Elena; Caprio, Sonia; Cree-Green, Melanie; Edelstein, Sharon L.; El Ghormli, Laure; Hannon, Tamara S.; Mather, Kieren J.; Palmer, Jerry; Nadeau, Kristen J.; RISE Consortium; Medicine, School of MedicineAims: To compare OGTT-derived estimates of β-cell function between youth and adults with impaired glucose tolerance (IGT) or recently diagnosed type 2 diabetes after treatment discontinuation in RISE. Methods: Youth (n = 89) and adults (n = 132) were randomized to 3 months glargine followed by 9 months metformin (G/M) or 12 months metformin (MET). Insulin sensitivity and β-cell responses were estimated from 3-hour OGTTs over 21 months. Linear mixed models tested for differences by time and age group within each treatment arm. Results: After treatment withdrawal, HbA1c increased in both youth and adults with a larger net increase in G/M youth vs. adults at 21 months. Among youth, β-cell function decreased starting at 12 months in G/M and 15 months in MET. Among adults, β-cell function remained relatively stable although insulin secretion rates decreased in G/M at 21 months. At 21 months vs. baseline β-cell function declined to a greater extent in youth vs. adults in both the G/M and MET treatment arms. Conclusions: After treatment withdrawal youth demonstrated progressive decline in β-cell function after stopping treatment with either G/M or MET. In contrast, β-cell function in adults remained stable despite an increase in HbA1c over time.Item Effect of Medical and Surgical Interventions on α-Cell Function in Dysglycemic Youth and Adults in the RISE Study(American Diabetes Association, 2021) Kahn, Steven E.; Edelstein, Sharon L.; Arslanian, Silva A.; Barengolts, Elena; Caprio, Sonia; Ehrmann, David A.; Hannon, Tamara S.; Marcovina, Santica; Mather, Kieren J.; Nadeau, Kristen J.; Utzschneider, Kristina M.; Xiang, Anny H.; Buchanan, Thomas A.; The RISE Consortium; Pediatrics, School of MedicineObjective: To compare effects of medications and laparoscopic gastric band surgery (LB) on α-cell function in dysglycemic youth and adults in the Restoring Insulin Secretion (RISE) Study protocols. Research design and methods: Glucagon was measured in three randomized, parallel, clinical studies: 1) 91 youth studied at baseline, after 12 months on metformin alone (MET) or glargine followed by metformin (G/M), and 3 months after treatment withdrawal; 2) 267 adults studied at the same time points and treated with MET, G/M, or liraglutide plus metformin (L+M) or given placebo (PLAC); and 3) 88 adults studied at baseline and after 12 and 24 months of LB or MET. Fasting glucagon, glucagon suppression by glucose, and acute glucagon response (AGR) to arginine were assessed during hyperglycemic clamps. Glucagon suppression was also measured during oral glucose tolerance tests (OGTTs). Results: No change in fasting glucagon, steady-state glucagon, or AGR was seen at 12 months following treatment with MET or G/M (in youth and adults) or PLAC (in adults). In contrast, L+M reduced these measures at 12 months (all P ≤ 0.005), which was maintained 3 months after treatment withdrawal (all P < 0.01). LB in adults also reduced fasting glucagon, steady-state glucagon, and AGR at 12 and 24 months (P < 0.05 for all, except AGR at 12 months [P = 0.098]). Similarly, glucagon suppression during OGTTs was greater with L+M and LB. Linear models demonstrated that treatment effects on glucagon with L+M and LB were largely associated with weight loss. Conclusions: Glucagon concentrations were reduced by L+M and LB in adults with dysglycemia, an effect principally attributable to weight loss in both interventions.Item Effect of Metformin Added to Insulin on Glycemic Control Among Overweight/Obese Adolescents With Type 1 Diabetes: A Randomized Clinical Trial(AMA, 2015-12) Libman, Ingrid M.; Miller, Kellee M.; DiMeglio, Linda A.; Bethin, Kathleen E.; Katz, Michelle L.; Shah, Avni; Simmons, Jill H.; Haller, Michael J.; Raman, Sripriya; Tamborlane, William V.; Coffey, Julie K.; Saenz, Ashleigh M.; Beck, Roy W.; Nadeau, Kristen J.; Department of Pediatrics, IU School of MedicineImportance Previous studies assessing the effect of metformin on glycemic control in adolescents with type 1 diabetes have produced inconclusive results. Objective To assess the efficacy and safety of metformin as an adjunct to insulin in treating overweight adolescents with type 1 diabetes. Design, Setting, and Participants Multicenter (26 pediatric endocrinology clinics), double-blind, placebo-controlled randomized clinical trial involving 140 adolescents aged 12.1 to 19.6 years (mean [SD] 15.3 [1.7] years) with mean type 1 diabetes duration 7.0 (3.3) years, mean body mass index (BMI) 94th (4) percentile, mean total daily insulin 1.1 (0.2) U/kg, and mean HbA1c 8.8% (0.7%). Interventions Randomization to receive metformin (n = 71) (≤2000 mg/d) or placebo (n = 69). Main Outcomes and Measures Primary outcome was change in HbA1c from baseline to 26 weeks adjusted for baseline HbA1c. Secondary outcomes included change in blinded continuous glucose monitor indices, total daily insulin, BMI, waist circumference, body composition, blood pressure, and lipids. Results Between October 2013 and February 2014, 140 participants were enrolled. Baseline HbA1c was 8.8% in each group. At 13-week follow-up, reduction in HbA1c was greater with metformin (−0.2%) than placebo (0.1%; mean difference, −0.3% [95% CI, −0.6% to 0.0%]; P = .02). However, this differential effect was not sustained at 26-week follow up when mean change in HbA1c from baseline was 0.2% in each group (mean difference, 0% [95% CI, −0.3% to 0.3%]; P = .92). At 26-week follow-up, total daily insulin per kg of body weight was reduced by at least 25% from baseline among 23% (16) of participants in the metformin group vs 1% (1) of participants in the placebo group (mean difference, 21% [95% CI, 11% to 32%]; P = .003), and 24% (17) of participants in the metformin group and 7% (5) of participants in the placebo group had a reduction in BMI z score of 10% or greater from baseline to 26 weeks (mean difference, 17% [95% CI, 5% to 29%]; P = .01). Gastrointestinal adverse events were reported by more participants in the metformin group than in the placebo group (mean difference, 36% [95% CI, 19% to 51%]; P < .001). Conclusions and Relevance Among overweight adolescents with type 1 diabetes, the addition of metformin to insulin did not improve glycemic control after 6 months. Of multiple secondary end points, findings favored metformin only for insulin dose and measures of adiposity; conversely, use of metformin resulted in an increased risk for gastrointestinal adverse events. These results do not support prescribing metformin to overweight adolescents with type 1 diabetes to improve glycemic control.Item High residual C-peptide likely contributes to glycemic control in type 1 diabetes(American Society for Clinical Investigation, 2020-01-02) Rickels, Michael R.; Evans-Molina, Carmella; Bahnson, Henry T.; Ylescupidez, Alyssa; Nadeau, Kristen J.; Hao, Wei; Clements, Mark A.; Sherr, Jennifer L.; Pratley, Richard E.; Hannon, Tamara S.; Shah, Viral N.; Miller, Kellee M.; Greenbaum, Carla J.; Medicine, School of MedicineBACKGROUND Residual C-peptide is detected in many people for years following the diagnosis of type 1 diabetes; however, the physiologic significance of low levels of detectable C-peptide is not known. METHODS We studied 63 adults with type 1 diabetes classified by peak mixed-meal tolerance test (MMTT) C-peptide as negative (<0.007 pmol/mL; n = 15), low (0.017–0.200; n = 16), intermediate (>0.200–0.400; n = 15), or high (>0.400; n = 17). We compared the groups’ glycemia from continuous glucose monitoring (CGM), β cell secretory responses from a glucose-potentiated arginine (GPA) test, insulin sensitivity from a hyperinsulinemic-euglycemic (EU) clamp, and glucose counterregulatory responses from a subsequent hypoglycemic (HYPO) clamp. RESULTS Low and intermediate MMTT C-peptide groups did not exhibit β cell secretory responses to hyperglycemia, whereas the high C-peptide group showed increases in both C-peptide and proinsulin (P ≤ 0.01). All groups with detectable MMTT C-peptide demonstrated acute C-peptide and proinsulin responses to arginine that were positively correlated with peak MMTT C-peptide (P < 0.0001 for both analytes). During the EU-HYPO clamp, C-peptide levels were proportionately suppressed in the low, intermediate, and high C-peptide compared with the negative group (P ≤ 0.0001), whereas glucagon increased from EU to HYPO only in the high C-peptide group compared with negative (P = 0.01). CGM demonstrated lower mean glucose and more time in range for the high C-peptide group. CONCLUSION These results indicate that in adults with type 1 diabetes, β cell responsiveness to hyperglycemia and α cell responsiveness to hypoglycemia are observed only at high levels of residual C-peptide that likely contribute to glycemic control. FUNDING Funding for this work was provided by the Leona M. and Harry B. Helmsley Charitable Trust, the National Center for Advancing Translational Sciences, and the National Institute of Diabetes and Digestive and Kidney Diseases.Item Hyperglucagonemia Does Not Explain the β-Cell Hyperresponsiveness and Insulin Resistance in Dysglycemic Youth Compared With Adults: Lessons From the RISE Study(American Diabetes Association, 2021) Kahn, Steven E.; Mather, Kieren J.; Arslanian, Silva A.; Barengolts, Elena; Buchanan, Thomas A.; Caprio, Sonia; Ehrmann, David A.; Hannon, Tamara S.; Marcovina, Santica; Nadeau, Kristen J.; Utzschneider, Kristina M.; Xiang, Anny H.; Edelstein, Sharon L.; The RISE Consortium; Medicine, School of MedicineObjective: To determine whether β-cell hyperresponsiveness and insulin resistance in youth versus adults in the Restoring Insulin Secretion (RISE) Study are related to increased glucagon release. Research design and methods: In 66 youth and 350 adults with impaired glucose tolerance (IGT) or recently diagnosed type 2 diabetes (drug naive), we performed hyperglycemic clamps and oral glucose tolerance tests (OGTTs). From clamps we quantified insulin sensitivity (M/I), plasma fasting glucagon and C-peptide, steady-state glucagon and C-peptide at glucose of 11.1 mmol/L, and arginine-stimulated glucagon (acute glucagon response [AGR]) and C-peptide (ACPRmax) responses at glucose >25 mmol/L. Results: Mean ± SD fasting glucagon (7.63 ± 3.47 vs. 8.55 ± 4.47 pmol/L; P = 0.063) and steady-state glucagon (2.24 ± 1.46 vs. 2.49 ± 1.96 pmol/L, P = 0.234) were not different in youth and adults, respectively, while AGR was lower in youth (14.1 ± 5.2 vs. 16.8 ± 8.8 pmol/L, P = 0.001). Significant age-group differences in insulin sensitivity, fasting C-peptide, steady-state C-peptide, and ACPRmax were not related to glucagon. Fasting glucose and glucagon were positively correlated in adults (r = 0.133, P = 0.012) and negatively correlated in youth (r = -0.143, P = 0.251). In both age-groups, higher fasting glucagon was associated with higher fasting C-peptide (youth r = 0.209, P = 0.091; adults r = 0.335, P < 0.001) and lower insulin sensitivity (youth r = -0.228, P = 0.066; adults r = -0.324, P < 0.001). With comparable fasting glucagon, youth had greater C-peptide and lower insulin sensitivity. OGTT suppression of glucagon was greater in youth. Conclusions: Youth with IGT or recently diagnosed type 2 diabetes (drug naive) have hyperresponsive β-cells and lower insulin sensitivity, but their glucagon concentrations are not increased compared with those in adults. Thus, α-cell dysfunction does not appear to explain the difference in β-cell function and insulin sensitivity in youth versus adults.Item Islet Autoimmunity in Adults With Impaired Glucose Tolerance and Recently Diagnosed, Treatment Naïve Type 2 Diabetes in the Restoring Insulin SEcretion (RISE) Study(Frontiers Media, 2021-04-26) Brooks-Worrell, Barbara M.; Tjaden, Ashley H.; Edelstein, Sharon L.; Palomino, Brenda; Utzschneider, Kristina M.; Arslanian, Silva; Mather, Kieren J.; Buchanan, Thomas A.; Nadeau, Kristen J.; Atkinson, Karen; Barengolts, Elena; Kahn, Steven E.; Palmer, Jerry P.; RISE Consortium; Medicine, School of MedicineThe presence of islet autoantibodies and islet reactive T cells (T+) in adults with established type 2 diabetes (T2D) have been shown to identify those patients with more severe β-cell dysfunction. However, at what stage in the progression toward clinical T2D does islet autoimmunity emerge as an important component influencing β-cell dysfunction? In this ancillary study to the Restoring Insulin SEcretion (RISE) Study, we investigated the prevalence of and association with β-cell dysfunction of T+ and autoantibodies to the 65 kDa glutamic acid decarboxylase antigen (GADA) in obese pre-diabetes adults with impaired glucose tolerance (IGT) and recently diagnosed treatment naïve (Ndx) T2D. We further investigated the effect of 12 months of RISE interventions (metformin or liraglutide plus metformin, or with 3 months of insulin glargine followed by 9 months of metformin or placebo) on islet autoimmune reactivity. We observed GADA(+) in 1.6% of NdxT2D and 4.6% of IGT at baseline, and in 1.6% of NdxT2D and 5.3% of IGT at 12 months, but no significant associations between GADA(+) and β-cell function. T(+) was observed in 50% of NdxT2D and 60.4% of IGT at baseline, and in 68.4% of NdxT2D and 83.9% of IGT at 12 months. T(+) NdxT2D were observed to have significantly higher fasting glucose (p = 0.004), and 2 h glucose (p = 0.0032), but significantly lower steady state C-peptide (sscpep, p = 0.007) compared to T(-) NdxT2D. T(+) IGT participants demonstrated lower but not significant (p = 0.025) acute (first phase) C-peptide response to glucose (ACPRg) compared to T(-) IGT. With metformin treatment, T(+) participants were observed to have a significantly lower Hemoglobin A1c (HbA1c, p = 0.002) and fasting C-peptide (p = 0.002) compared to T(-), whereas T(+) treated with liraglutide + metformin had significantly lower sscpep (p = 0.010) compared to T(-) participants. In the placebo group, T(+) participants demonstrated significantly lower ACPRg (p = 0.001) compared to T(-) participants. In summary, T(+) were found in a large percentage of obese pre-diabetes adults with IGT and in recently diagnosed T2D. Moreover, T(+) were significantly correlated with treatment effects and β-cell dysfunction. Our results demonstrate that T(+) are an important component in T2D.Item Metformin Improves Peripheral Insulin Sensitivity in Youth With Type 1 Diabetes(Endocrine Society, 2019-08) Cree-Green, Melanie; Bergman, Bryan C.; Cengiz, Eda; Fox, Larry A.; Hannon, Tamara S.; Miller, Kellee; Nathan, Brandon; Pyle, Laura; Kahn, Darcy; Tansey, Michael; Tichy, Eileen; Tsalikian, Eva; Libman, Ingrid; Nadeau, Kristen J.; Pediatrics, School of MedicineContext: Type 1 diabetes in adolescence is characterized by insulin deficiency and insulin resistance (IR), both thought to increase cardiovascular disease risk. We previously demonstrated that adolescents with type 1 diabetes have adipose, hepatic, and muscle IR, and that metformin lowers daily insulin dose, suggesting improved IR. However, whether metformin improves IR in muscle, hepatic, or adipose tissues in type 1 diabetes was unknown. Objective: Measure peripheral, hepatic, and adipose insulin sensitivity before and after metformin or placebo therapy in youth with obesity with type 1 diabetes. Design: Double-blind, placebo-controlled clinical trial. Setting: Multi-center at eight sites of the T1D Exchange Clinic Network. Participants: A subset of 12- to 19-year-olds with type 1 diabetes (inclusion criteria: body mass index ≥85th percentile, HbA1c 7.5% to 9.9%, insulin dosing ≥0.8 U/kg/d) from a larger trial (NCT02045290) were enrolled. Intervention: Participants were randomized to 3 months of metformin (N = 19) or placebo (N = 18) and underwent a three-phase hyperinsulinemic euglycemic clamp with glucose and glycerol isotope tracers to assess tissue-specific IR before and after treatment. Main outcome measures: Peripheral insulin sensitivity, endogenous glucose release, rate of lipolysis. Results: Between-group differences in change in insulin sensitivity favored metformin regarding whole-body IR [change in glucose infusion rate 1.3 (0.1, 2.4) mg/kg/min, P = 0.03] and peripheral IR [change in metabolic clearance rate 0.923 (-0.002, 1.867) dL/kg/min, P = 0.05]. Metformin did not impact insulin suppression of endogenous glucose release (P = 0.12). Adipose IR was not assessable with traditional methods in this highly IR population. Conclusions: Metformin appears to improve whole-body and peripheral IR in youth who are overweight/obese with type 1 diabetes.Item Obstructive Sleep Apnea, Glucose Tolerance, and β-Cell Function in Adults With Prediabetes or Untreated Type 2 Diabetes in the Restoring Insulin Secretion (RISE) Study(American Diabetes Association, 2021-04) Mokhlesi, Babak; Tjaden, Ashley H.; Temple, Karla A.; Edelstein, Sharon L.; Sam, Susan; Nadeau, Kristen J.; Hannon, Tamara S.; Manchanda, Shalini; Mather, Kieren J.; Kahn, Steven E.; Ehrmann, David A.; Van Cauter, Eve; RISE Consortium; Pediatrics, School of MedicineObjective: Obstructive sleep apnea (OSA) is associated with insulin resistance and has been described as a risk factor for type 2 diabetes. Whether OSA adversely impacts pancreatic islet β-cell function remains unclear. We aimed to investigate the association of OSA and short sleep duration with β-cell function in overweight/obese adults with prediabetes or recently diagnosed, treatment-naive type 2 diabetes. Research design and methods: Two hundred twenty-one adults (57.5% men, age 54.5 ± 8.7 years, BMI 35.1 ± 5.5 kg/m2) completed 1 week of wrist actigraphy and 1 night of polysomnography before undergoing a 3-h oral glucose tolerance test (OGTT) and a two-step hyperglycemic clamp. Associations of measures of OSA and actigraphy-derived sleep duration with HbA1c, OGTT-derived outcomes, and clamp-derived outcomes were evaluated with adjusted regression models. Results: Mean ± SD objective sleep duration by actigraphy was 6.6 ± 1.0 h/night. OSA, defined as an apnea-hypopnea index (AHI) of five or more events per hour, was present in 89% of the participants (20% mild, 28% moderate, 41% severe). Higher AHI was associated with higher HbA1c (P = 0.007). However, OSA severity, measured either by AHI as a continuous variable or by categories of OSA severity, and sleep duration (continuous or <6 vs. ≥6 h) were not associated with fasting glucose, 2-h glucose, insulin sensitivity, or β-cell responses. Conclusions: In this baseline cross-sectional analysis of the RISE clinical trial of adults with prediabetes or recently diagnosed, untreated type 2 diabetes, the prevalence of OSA was high. Although some measures of OSA severity were associated with HbA1c, OSA severity and sleep duration were not associated with measures of insulin sensitivity or β-cell responses.