- Browse by Author
Browsing by Author "Na, Duk L."
Now showing 1 - 10 of 11
Results Per Page
Sort Options
Item Classification and prediction of cognitive trajectories of cognitively unimpaired individuals(Frontiers Media, 2023-03-13) Kim, Young Ju; Kim, Si Eun; Hahn, Alice; Jang, Hyemin; Kim, Jun Pyo; Kim, Hee Jin; Na, Duk L.; Chin, Juhee; Seo, Sang Won; Alzheimer’s Disease Neuroimaging Initiative; Radiology and Imaging Sciences, School of MedicineObjectives: Efforts to prevent Alzheimer's disease (AD) would benefit from identifying cognitively unimpaired (CU) individuals who are liable to progress to cognitive impairment. Therefore, we aimed to develop a model to predict cognitive decline among CU individuals in two independent cohorts. Methods: A total of 407 CU individuals from the Alzheimer's Disease Neuroimaging Initiative (ADNI) and 285 CU individuals from the Samsung Medical Center (SMC) were recruited in this study. We assessed cognitive outcomes by using neuropsychological composite scores in the ADNI and SMC cohorts. We performed latent growth mixture modeling and developed the predictive model. Results: Growth mixture modeling identified 13.8 and 13.0% of CU individuals in the ADNI and SMC cohorts, respectively, as the "declining group." In the ADNI cohort, multivariable logistic regression modeling showed that increased amyloid-β (Aβ) uptake (β [SE]: 4.852 [0.862], p < 0.001), low baseline cognitive composite scores (β [SE]: -0.274 [0.070], p < 0.001), and reduced hippocampal volume (β [SE]: -0.952 [0.302], p = 0.002) were predictive of cognitive decline. In the SMC cohort, increased Aβ uptake (β [SE]: 2.007 [0.549], p < 0.001) and low baseline cognitive composite scores (β [SE]: -4.464 [0.758], p < 0.001) predicted cognitive decline. Finally, predictive models of cognitive decline showed good to excellent discrimination and calibration capabilities (C-statistic = 0.85 for the ADNI model and 0.94 for the SMC model). Conclusion: Our study provides novel insights into the cognitive trajectories of CU individuals. Furthermore, the predictive model can facilitate the classification of CU individuals in future primary prevention trials.Item Clinical outcomes of increased focal amyloid uptake in individuals with subthreshold global amyloid levels(Frontiers Media, 2023-03-02) Kim, Jaeho; Choe, Yeong Sim; Park, Yuhyun; Kim, Yeshin; Kim, Jun Pyo; Jang, Hyemin; Kim, Hee Jin; Na, Duk L.; Cho, Soo-Jin; Moon, Seung Hwan; Seo, Sang Won; Radiology and Imaging Sciences, School of MedicineBackground: Although the standardized uptake value ratio (SUVR) method is objective and simple, cut-off optimization using global SUVR values may not reflect focal increased uptake in the cerebrum. The present study investigated clinical and neuroimaging characteristics according to focally increased β-amyloid (Aβ) uptake and global Aβ status. Methods: We recruited 968 participants with cognitive continuum. All participants underwent neuropsychological tests and 498 18F-florbetaben (FBB) amyloid positron emission tomography (PET) and 470 18F-flutemetamol (FMM) PET. Each PET scan was assessed in 10 regions (left and right frontal, lateral temporal, parietal, cingulate, and striatum) with focal-quantitative SUVR-based cutoff values for each region by using an iterative outlier approach. Results: A total of 62 (6.4%) subjects showed increased focal Aβ uptake with subthreshold global Aβ status [global (-) and focal (+) Aβ group, G(-)F(+) group]. The G(-)F(+) group showed worse performance in memory impairment (p < 0.001), global cognition (p = 0.009), greater hippocampal atrophy (p = 0.045), compared to those in the G(-)F(-). Participants with widespread Aβ involvement in the whole region [G(+)] showed worse neuropsychological (p < 0.001) and neuroimaging features (p < 0.001) than those with focal Aβ involvement G(-)F(+). Conclusion: Our findings suggest that individuals show distinctive clinical outcomes according to focally increased Aβ uptake and global Aβ status. Thus, researchers and clinicians should pay more attention to focal increased Aβ uptake in addition to global Aβ status.Item Contribution of clinical information to the predictive performance of plasma β-amyloid levels for amyloid positron emission tomography positivity(Frontiers Media, 2023-03-14) Chun, Min Young; Jang, Hyemin; Kim, Hee Jin; Kim, Jun Pyo; Gallacher, John; Allué, José Antonio; Sarasa, Leticia; Castillo, Sergio; Pascual-Lucas, María; Na, Duk L.; Seo, Sang Won; DPUK; Radiology and Imaging Sciences, School of MedicineBackground: Early detection of β-amyloid (Aβ) accumulation, a major biomarker for Alzheimer's disease (AD), has become important. As fluid biomarkers, the accuracy of cerebrospinal fluid (CSF) Aβ for predicting Aβ deposition on positron emission tomography (PET) has been extensively studied, and the development of plasma Aβ is beginning to receive increased attention recently. In the present study, we aimed to determine whether APOE genotypes, age, and cognitive status increase the predictive performance of plasma Aβ and CSF Aβ levels for Aβ PET positivity. Methods: We recruited 488 participants who underwent both plasma Aβ and Aβ PET studies (Cohort 1) and 217 participants who underwent both cerebrospinal fluid (CSF) Aβ and Aβ PET studies (Cohort 2). Plasma and CSF samples were analyzed using ABtest-MS, an antibody-free liquid chromatography-differential mobility spectrometry-triple quadrupole mass spectrometry method and INNOTEST enzyme-linked immunosorbent assay kits, respectively. To evaluate the predictive performance of plasma Aβ and CSF Aβ, respectively, logistic regression and receiver operating characteristic analyses were performed. Results: When predicting Aβ PET status, both plasma Aβ42/40 ratio and CSF Aβ42 showed high accuracy (plasma Aβ area under the curve (AUC) 0.814; CSF Aβ AUC 0.848). In the plasma Aβ models, the AUC values were higher than plasma Aβ alone model, when the models were combined with either cognitive stage (p < 0.001) or APOE genotype (p = 0.011). On the other hand, there was no difference between the CSF Aβ models, when these variables were added. Conclusion: Plasma Aβ might be a useful predictor of Aβ deposition on PET status as much as CSF Aβ, particularly when considered with clinical information such as APOE genotype and cognitive stage.Item Differential effects of risk factors on the cognitive trajectory of early- and late-onset Alzheimer’s disease(BMC, 2021-06-14) Kim, Jaeho; Woo, Sook-Young; Kim, Seonwoo; Jang, Hyemin; Kim, Junpyo; Kim, Jisun; Kang, Sung Hoon; Na, Duk L.; Chin, Juhee; Apostolova, Liana G.; Seo, Sang Won; Kim, Hee Jin; Neurology, School of MedicineBackground: Although few studies have shown that risk factors for Alzheimer's disease (AD) are associated with cognitive decline in AD, not much is known whether the impact of risk factors differs between early-onset AD (EOAD, symptom onset < 65 years of age) versus late-onset AD (LOAD). Therefore, we evaluated whether the impact of Alzheimer's disease (AD) risk factors on cognitive trajectories differ in EOAD and LOAD. Methods: We followed-up 193 EOAD and 476 LOAD patients without known autosomal dominant AD mutation for 32.3 ± 23.2 months. Mixed-effects model analyses were performed to evaluate the effects of APOE ε4, low education, hypertension, diabetes, dyslipidemia, and obesity on cognitive trajectories. Results: APOE ε4 carriers showed slower cognitive decline in general cognitive function, language, and memory domains than APOE ε4 carriers in EOAD but not in LOAD. Although patients with low education showed slower cognitive decline than patients with high education in both EOAD and LOAD, the effect was stronger in EOAD, specifically in frontal-executive function. Patients with hypertension showed faster cognitive decline than did patients without hypertension in frontal-executive and general cognitive function in LOAD but not in EOAD. Patients with obesity showed slower decline in general cognitive function than non-obese patients in EOAD but not in LOAD. Conclusions: Known risk factors for AD were associated with slower cognitive decline in EOAD but rapid cognitive decline in LOAD.Item Distinctive Temporal Trajectories of Alzheimer's Disease Biomarkers According to Sex and APOE Genotype: Importance of Striatal Amyloid(Frontiers Media, 2022-02-07) Kim, Jun Pyo; Chun, Min Young; Kim, Soo-Jon; Jang, Hyemin; Kim, Hee Jin; Jeong, Jee Hyang; Na, Duk L.; Seo, Sang Won; Alzheimer’s Disease Neuroimaging Initiative; Radiology and Imaging Sciences, School of MedicinePurpose: Previously, sex and apolipoprotein E (APOE) genotype had distinct effects on the cognitive trajectory across the Alzheimer's disease (AD) continuum. We therefore aimed to investigate whether these trajectory curves including β-amyloid (Aβ) accumulation in the cortex and striatum, and tau accumulation would differ according to sex and APOE genotype. Methods: We obtained 534 subjects for 18F-florbetapir (AV45) PET analysis and 163 subjects for 18F-flortaucipir (AV1451) PET analysis from the Alzheimer's Disease Neuroimaging Initiative database. For cortical Aβ, striatal Aβ, and tau SUVR, we fitted penalized splines to model the slopes of SUVR value as a non-linear function of baseline SUVR value. By integrating the fitted splines, we obtained the predicted SUVR curves as a function of time. Results: The time from initial SUVR to the cutoff values were 14.9 years for cortical Aβ, 18.2 years for striatal Aβ, and 22.7 years for tau. Although there was no difference in cortical Aβ accumulation rate between women and men, striatal Aβ accumulation was found to be faster in women than in men, and this temporal difference according to sex was more pronounced in tau accumulation. However, APOE ε4 carriers showed faster progression than non-carriers regardless of kinds of AD biomarkers' trajectories. Conclusion: Our temporal trajectory models illustrate that there is a distinct progression pattern of AD biomarkers depending on sex and APOE genotype. In this regard, our models will be able to contribute to designing personalized treatment and prevention strategies for AD in clinical practice.Item The Effects of Longitudinal White Matter Hyperintensity Change on Cognitive Decline and Cortical Thinning over Three Years(MDPI, 2020-08-17) Kim, Seung Joo; Lee, Dong Kyun; Jang, Young Kyoung; Jang, Hyemin; Kim, Si Eun; Cho, Soo Hyun; Kim, Jun Pyo; Jung, Young Hee; Kim, Eun-Joo; Na, Duk L.; Lee, Jong-Min; Seo, Sang Won; Kim, Hee Jin; Radiology and Imaging Sciences, School of MedicineWhite matter hyperintensity (WMH) has been recognised as a surrogate marker of small vessel disease and is associated with cognitive impairment. We investigated the dynamic change in WMH in patients with severe WMH at baseline, and the effects of longitudinal change of WMH volume on cognitive decline and cortical thinning. Eighty-seven patients with subcortical vascular mild cognitive impairment were prospectively recruited from a single referral centre. All of the patients were followed up with annual neuropsychological tests and 3T brain magnetic resonance imaging. The WMH volume was quantified using an automated method and the cortical thickness was measured using surface-based methods. Participants were classified into WMH progression and WMH regression groups based on the delta WMH volume between the baseline and the last follow-up. To investigate the effects of longitudinal change in WMH volume on cognitive decline and cortical thinning, a linear mixed effects model was used. Seventy patients showed WMH progression and 17 showed WMH regression over a three-year period. The WMH progression group showed more rapid cortical thinning in widespread regions compared with the WMH regression group. However, the rate of cognitive decline in language, visuospatial function, memory and executive function, and general cognitive function was not different between the two groups. The results of this study indicated that WMH volume changes are dynamic and WMH progression is associated with more rapid cortical thinning.Item Effects of risk factors on the development and mortality of early- and late-onset dementia: an 11-year longitudinal nationwide population-based cohort study in South Korea(Springer Nature, 2024-04-25) Chun, Min Young; Chae, Wonjeong; Seo, Sang Won; Jang, Hyemin; Yun, Jihwan; Na, Duk L.; Kang, Dongwoo; Lee, Jungkuk; Hammers, Dustin B.; Apostolova, Liana G.; Jang, Sung-In; Kim, Hee Jin; Neurology, School of MedicineBackground: Early-onset dementia (EOD, onset age < 65) and late-onset dementia (LOD, onset age ≥ 65) exhibit distinct features. Understanding the risk factors for dementia development and mortality in EOD and LOD respectively is crucial for personalized care. While risk factors are known for LOD development and mortality, their impact on EOD remains unclear. We aimed to investigate how hypertension, diabetes mellitus, hyperlipidemia, atrial fibrillation, and osteoporosis influence the development and mortality of EOD and LOD, respectively. Methods: Using the Korean National Health Insurance Service (NHIS) database, we collected 546,709 dementia-free individuals and followed up for 11 years. In the two study groups, the Younger group (< 65 years old) and the Older group (≥ 65 years old), we applied Cox proportional hazard models to assess risk factors for development of EOD and LOD, respectively. Then, we assessed risk factors for mortality among EOD and LOD. Results: Diabetes mellitus and osteoporosis increased the risk of EOD and LOD development. Hypertension increased the risk of EOD, while atrial fibrillation increased the risk of LOD. Conversely, hyperlipidemia exhibited a protective effect against LOD development. Additionally, diabetes mellitus increased mortality in EOD and LOD. Hypertension and atrial fibrillation increased mortality in LOD, while hyperlipidemia decreased mortality in EOD and LOD. Conclusions: Risk factors influencing dementia development and mortality differed in EOD and LOD. Targeted public health interventions addressing age-related risk factors may reduce dementia incidence and mortality.Item Emerging role of vascular burden in AT(N) classification in individuals with Alzheimer's and concomitant cerebrovascular burdens(BMJ, 2023-12-14) Chun, Min Young; Jang, Hyemin; Kim, Soo-Jong; Park, Yu Hyun; Yun, Jihwan; Lockhart, Samuel N.; Weiner, Michael; De Carli, Charles; Moon, Seung Hwan; Choi, Jae Yong; Nam, Kyung Rok; Byun, Byung-Hyun; Lim, Sang-Moo; Kim, Jun Pyo; Choe, Yeong Sim; Kim, Young Ju; Na, Duk L.; Kim, Hee Jin; Seo, Sang Won; Radiology and Imaging Sciences, School of MedicineObjectives: Alzheimer's disease (AD) is characterised by amyloid-beta accumulation (A), tau aggregation (T) and neurodegeneration (N). Vascular (V) burden has been found concomitantly with AD pathology and has synergistic effects on cognitive decline with AD biomarkers. We determined whether cognitive trajectories of AT(N) categories differed according to vascular (V) burden. Methods: We prospectively recruited 205 participants and classified them into groups based on the AT(N) system using neuroimaging markers. Abnormal V markers were identified based on the presence of severe white matter hyperintensities. Results: In A+ category, compared with the frequency of Alzheimer's pathological change category (A+T-), the frequency of AD category (A+T+) was significantly lower in V+ group (31.8%) than in V- group (64.4%) (p=0.004). Each AT(N) biomarker was predictive of cognitive decline in the V+ group as well as in the V- group (p<0.001). Additionally, the V+ group showed more severe cognitive trajectories than the V- group in the non-Alzheimer's pathological changes (A-T+, A-N+; p=0.002) and Alzheimer's pathological changes (p<0.001) categories. Conclusion: The distribution and longitudinal outcomes of AT(N) system differed according to vascular burdens, suggesting the importance of incorporating a V biomarker into the AT(N) system.Item Identifying genetic variants for amyloid β in subcortical vascular cognitive impairment(Frontiers Media, 2023-04-18) Kim, Hang-Rai; Jung, Sang-Hyuk; Kim, Beomsu; Kim, Jaeho; Jang, Hyemin; Kim, Jun Pyo; Kim, So Yeon; Na, Duk L.; Kim, Hee Jin; Nho, Kwangsik; Won, Hong-Hee; Seo, Sang Won; Alzheimer’s Disease Neuroimaging Initiative; Radiology and Imaging Sciences, School of MedicineBackground: The genetic basis of amyloid β (Aβ) deposition in subcortical vascular cognitive impairment (SVCI) is still unknown. Here, we investigated genetic variants involved in Aβ deposition in patients with SVCI. Methods: We recruited a total of 110 patients with SVCI and 424 patients with Alzheimer's disease-related cognitive impairment (ADCI), who underwent Aβ positron emission tomography and genetic testing. Using candidate AD-associated single nucleotide polymorphisms (SNPs) that were previously identified, we investigated Aβ-associated SNPs that were shared or distinct between patients with SVCI and those with ADCI. Replication analyses were performed using the Alzheimer's Disease Neuroimaging Initiative (ADNI) and Religious Orders Study and Rush Memory and Aging Project cohorts (ROS/MAP). Results: We identified a novel SNP, rs4732728, which showed distinct associations with Aβ positivity in patients with SVCI (P interaction = 1.49 × 10-5); rs4732728 was associated with increased Aβ positivity in SVCI but decreased Aβ positivity in ADCI. This pattern was also observed in ADNI and ROS/MAP cohorts. Prediction performance for Aβ positivity in patients with SVCI increased (area under the receiver operating characteristic curve = 0.780; 95% confidence interval = 0.757-0.803) when rs4732728 was included. Cis-expression quantitative trait loci analysis demonstrated that rs4732728 was associated with EPHX2 expression in the brain (normalized effect size = -0.182, P = 0.005). Conclusion: The novel genetic variants associated with EPHX2 showed a distinct effect on Aβ deposition between SVCI and ADCI. This finding may provide a potential pre-screening marker for Aβ positivity and a candidate therapeutic target for SVCI.Item Identifying novel genetic variants for brain amyloid deposition: a genome-wide association study in the Korean population(BMC, 2021-06-21) Kim, Hang-Rai; Jung, Sang-Hyuk; Kim, Jaeho; Jang, Hyemin; Kang, Sung Hoon; Hwangbo, Song; Kim, Jun Pyo; Kim, So Yeon; Kim, Beomsu; Kim, Soyeon; Jeong, Jee Hyang; Yoon, Soo Jin; Park, Kyung Won; Kim, Eun-Joo; Yoon, Bora; Jang, Jae-Won; Hong, Jin Yong; Choi, Seong Hye; Noh, Young; Kim, Ko Woon; Kim, Si Eun; Lee, Jin San; Jung, Na-Yeon; Lee, Juyoun; Kim, Byeong C.; Son, Sang Joon; Hong, Chang Hyung; Na, Duk L.; Seo, Sang Won; Won, Hong-Hee; Kim, Hee Jin; Radiology and Imaging Sciences, School of MedicineBackground: Genome-wide association studies (GWAS) have identified a number of genetic variants for Alzheimer's disease (AD). However, most GWAS were conducted in individuals of European ancestry, and non-European populations are still underrepresented in genetic discovery efforts. Here, we performed GWAS to identify single nucleotide polymorphisms (SNPs) associated with amyloid β (Aβ) positivity using a large sample of Korean population. Methods: One thousand four hundred seventy-four participants of Korean ancestry were recruited from multicenters in South Korea. Discovery dataset consisted of 1190 participants (383 with cognitively unimpaired [CU], 330 with amnestic mild cognitive impairment [aMCI], and 477 with AD dementia [ADD]) and replication dataset consisted of 284 participants (46 with CU, 167 with aMCI, and 71 with ADD). GWAS was conducted to identify SNPs associated with Aβ positivity (measured by amyloid positron emission tomography). Aβ prediction models were developed using the identified SNPs. Furthermore, bioinformatics analysis was conducted for the identified SNPs. Results: In addition to APOE, we identified nine SNPs on chromosome 7, which were associated with a decreased risk of Aβ positivity at a genome-wide suggestive level. Of these nine SNPs, four novel SNPs (rs73375428, rs2903923, rs3828947, and rs11983537) were associated with a decreased risk of Aβ positivity (p < 0.05) in the replication dataset. In a meta-analysis, two SNPs (rs7337542 and rs2903923) reached a genome-wide significant level (p < 5.0 × 10-8). Prediction performance for Aβ positivity increased when rs73375428 were incorporated (area under curve = 0.75; 95% CI = 0.74-0.76) in addition to clinical factors and APOE genotype. Cis-eQTL analysis demonstrated that the rs73375428 was associated with decreased expression levels of FGL2 in the brain. Conclusion: The novel genetic variants associated with FGL2 decreased risk of Aβ positivity in the Korean population. This finding may provide a candidate therapeutic target for AD, highlighting the importance of genetic studies in diverse populations.