- Browse by Author
Browsing by Author "Murray, Melissa E."
Now showing 1 - 10 of 18
Results Per Page
Sort Options
Item Aging-related tau astrogliopathy (ARTAG): harmonized evaluation strategy(Springer, 2016-01) Kovacs, Gabor G.; Ferrer, Isidro; Alafuzoff, Irina; Attems, Johannes; Budka, Herbert; Cairns, Nigel J.; Crary, John F.; Duyckaerts, Charles; Ghetti, Bernardino; Halliday, Glenda M.; Ironside, James W.; Love, Seth; Mackenzie, Ian R.; Munoz, David G.; Murray, Melissa E.; Nelson, Peter T.; Takahashi, Hitoshi; Trojanowski, John Q.; Ansorge, Olaf; Arzberger, Thomas; Baborie, Atik; Beach, Thomas G.; Bieniek, Kevin F.; Bigio, Eileen H.; Bodi, Istvan; Dugger, Brittany N.; Feany, Mel; Gelpi, Ellen; Gentleman, Stephen M.; Giaccone, Giorgio; Hatanpaa, Kimmo J.; Heale, Richard; Hof, Patrick R.; Hofer, Monika; Hortobágyi, Tibor; Jellinger, Kurt; Jicha, Gregory A.; Ince, Paul; Kofler, Julia; Kövari, Enikö; Kril, Jillian J.; Mann, David M.; Matej, Radoslav; McKee, Ann C.; McLean, Catriona; Milenkovic, Ivan; Montine, Thomas J.; Murayama, Shigeo; Lee, Edward B.; Rahimi, Jasmin; Rodriguez, Roberta D.; Rozemüller, Annemieke; Schneider, Julie A.; Schultz, Christian; Seeley, William; Seilhean, Danielle; Smith, Colin; Tagliavini, Fabrizio; Takao, Masaki; Thal, Dietmar Rudolf; Toledo, Jon B.; Tolnay, Markus; Troncoso, Juan C.; Vinters, Harry V.; Weis, Serge; Wharton, Stephen B.; White III, Charles L.; Wisniewski, Thomas; Woulfe, John M.; Yamada, Masahito; Dicks, Dennis W.; Department of Pathology and Laboratory Medicine, IU School of MedicinePathological accumulation of abnormally phosphorylated tau protein in astrocytes is a frequent, but poorly characterized feature of the aging brain. Its etiology is uncertain, but its presence is sufficiently ubiquitous to merit further characterization and classification, which may stimulate clinicopathological studies and research into its pathobiology. This paper aims to harmonize evaluation and nomenclature of aging-related tau astrogliopathy (ARTAG), a term that refers to a morphological spectrum of astroglial pathology detected by tau immunohistochemistry, especially with phosphorylation-dependent and 4R isoform-specific antibodies. ARTAG occurs mainly, but not exclusively, in individuals over 60 years of age. Tau-immunoreactive astrocytes in ARTAG include thorn-shaped astrocytes at the glia limitans and in white matter, as well as solitary or clustered astrocytes with perinuclear cytoplasmic tau immunoreactivity that extends into the astroglial processes as fine fibrillar or granular immunopositivity, typically in gray matter. Various forms of ARTAG may coexist in the same brain and might reflect different pathogenic processes. Based on morphology and anatomical distribution, ARTAG can be distinguished from primary tauopathies, but may be concurrent with primary tauopathies or other disorders. We recommend four steps for evaluation of ARTAG: (1) identification of five types based on the location of either morphologies of tau astrogliopathy: subpial, subependymal, perivascular, white matter, gray matter; (2) documentation of the regional involvement: medial temporal lobe, lobar (frontal, parietal, occipital, lateral temporal), subcortical, brainstem; (3) documentation of the severity of tau astrogliopathy; and (4) description of subregional involvement. Some types of ARTAG may underlie neurological symptoms; however, the clinical significance of ARTAG is currently uncertain and awaits further studies. The goal of this proposal is to raise awareness of astroglial tau pathology in the aged brain, facilitating communication among neuropathologists and researchers, and informing interpretation of clinical biomarkers and imaging studies that focus on tau-related indicators.Item Amyloid and tau-PET in early-onset AD: Baseline data from the Longitudinal Early-onset Alzheimer's Disease Study (LEADS)(Wiley, 2023) Cho, Hanna; Mundada, Nidhi S.; Apostolova, Liana G.; Carrillo, Maria C.; Shankar, Ranjani; Amuiri, Alinda N.; Zeltzer, Ehud; Windon, Charles C.; Soleimani-Meigooni, David N.; Tanner, Jeremy A.; Heath, Courtney Lawhn; Lesman-Segev, Orit H.; Aisen, Paul; Eloyan, Ani; Lee, Hye Sun; Hammers, Dustin B.; Kirby, Kala; Dage, Jeffrey L.; Fagan, Anne; Foroud, Tatiana; Grinberg, Lea T.; Jack, Clifford R.; Kramer, Joel; Kukull, Walter A.; Murray, Melissa E.; Nudelman, Kelly; Toga, Arthur; Vemuri, Prashanthi; Atri, Alireza; Day, Gregory S.; Duara, Ranjan; Graff-Radford, Neill R.; Honig, Lawrence S.; Jones, David T.; Masdeu, Joseph; Mendez, Mario; Musiek, Erik; Onyike, Chiadi U.; Riddle, Meghan; Rogalski, Emily J.; Salloway, Stephen; Sha, Sharon; Turner, Raymond Scott; Wingo, Thomas S.; Wolk, David A.; Koeppe, Robert; Iaccarino, Leonardo; Dickerson, Bradford C.; La Joie, Renaud; Rabinovici, Gil D.; LEADS Consortium; Neurology, School of MedicineIntroduction: We aimed to describe baseline amyloid-beta (Aβ) and tau-positron emission tomograrphy (PET) from Longitudinal Early-onset Alzheimer's Disease Study (LEADS), a prospective multi-site observational study of sporadic early-onset Alzheimer's disease (EOAD). Methods: We analyzed baseline [18F]Florbetaben (Aβ) and [18F]Flortaucipir (tau)-PET from cognitively impaired participants with a clinical diagnosis of mild cognitive impairment (MCI) or AD dementia aged < 65 years. Florbetaben scans were used to distinguish cognitively impaired participants with EOAD (Aβ+) from EOnonAD (Aβ-) based on the combination of visual read by expert reader and image quantification. Results: 243/321 (75.7%) of participants were assigned to the EOAD group based on amyloid-PET; 231 (95.1%) of them were tau-PET positive (A+T+). Tau-PET signal was elevated across cortical regions with a parietal-predominant pattern, and higher burden was observed in younger and female EOAD participants. Discussion: LEADS data emphasizes the importance of biomarkers to enhance diagnostic accuracy in EOAD. The advanced tau-PET binding at baseline might have implications for therapeutic strategies in patients with EOAD. Highlights: 72% of patients with clinical EOAD were positive on both amyloid- and tau-PET. Amyloid-positive patients with EOAD had high tau-PET signal across cortical regions. In EOAD, tau-PET mediated the relationship between amyloid-PET and MMSE. Among EOAD patients, younger onset and female sex were associated with higher tau-PET.Item Baseline neuropsychiatric symptoms and psychotropic medication use midway through data collection of the Longitudinal Early-Onset Alzheimer's Disease Study (LEADS) cohort(Wiley, 2023) Polsinelli, Angelina J.; Wonderlin, Ryan J.; Hammers, Dustin B.; Pena Garcia, Alex; Eloyan, Anii; Taurone, Alexander; Thangarajah, Maryanne; Beckett, Laurel; Gao, Sujuan; Wang, Sophia; Kirby, Kala; Logan, Paige E.; Aisen, Paul; Dage, Jeffrey L.; Foroud, Tatiana; Griffin, Percy; Iaccarino, Leonardo; Kramer, Joel H.; Koeppe, Robert; Kukull, Walter A.; La Joie, Renaud; Mundada, Nidhi S.; Murray, Melissa E.; Nudelman, Kelly; Soleimani-Meigooni, David N.; Rumbaugh, Malia; Toga, Arthur W.; Touroutoglou, Alexandra; Vemuri, Prashanthi; Atri, Alireza; Day, Gregory S.; Duara, Ranjan; Graff-Radford, Neill R.; Honig, Lawrence S.; Jones, David T.; Masdeu, Joseph; Mendez, Mario F.; Womack, Kyle; Musiek, Erik; Onyike, Chiadi U.; Riddle, Meghan; Rogalski, Emily; Salloway, Steven; Sha, Sharon J.; Turner, Raymond S.; Wingo, Thomas S.; Wolk, David A.; Carrillo, Maria C.; Dickerson, Bradford C.; Rabinovici, Gil D.; Apostolova, Liana G.; LEADS Consortium; Neurology, School of MedicineIntroduction: We examined neuropsychiatric symptoms (NPS) and psychotropic medication use in a large sample of individuals with early-onset Alzheimer's disease (EOAD; onset 40-64 years) at the midway point of data collection for the Longitudinal Early-onset Alzheimer's Disease Study (LEADS). Methods: Baseline NPS (Neuropsychiatric Inventory - Questionnaire; Geriatric Depression Scale) and psychotropic medication use from 282 participants enrolled in LEADS were compared across diagnostic groups - amyloid-positive EOAD (n = 212) and amyloid negative early-onset non-Alzheimer's disease (EOnonAD; n = 70). Results: Affective behaviors were the most common NPS in EOAD at similar frequencies to EOnonAD. Tension and impulse control behaviors were more common in EOnonAD. A minority of participants were using psychotropic medications, and use was higher in EOnonAD. Discussion: Overall NPS burden and psychotropic medication use were higher in EOnonAD than EOAD participants. Future research will investigate moderators and etiological drivers of NPS, and NPS differences in EOAD versus late-onset AD. Keywords: early-onset Alzheimer's disease; early-onset dementia; mild cognitive impairment; neuropharmacology; neuropsychiatric symptoms; psychotropic medications.Item Cerebrospinal fluid biomarkers in the Longitudinal Early-onset Alzheimer's Disease Study(Wiley, 2023) Dage, Jeffrey L.; Eloyan, Ani; Thangarajah, Maryanne; Hammers, Dustin B.; Fagan, Anne M.; Gray, Julia D.; Schindler, Suzanne E.; Snoddy, Casey; Nudelman, Kelly N. H.; Faber, Kelley M.; Foroud, Tatiana; Aisen, Paul; Griffin, Percy; Grinberg, Lea T.; Iaccarino, Leonardo; Kirby, Kala; Kramer, Joel; Koeppe, Robert; Kukull, Walter A.; La Joie, Renaud; Mundada, Nidhi S.; Murray, Melissa E.; Rumbaugh, Malia; Soleimani-Meigooni, David N.; Toga, Arthur W.; Touroutoglou, Alexandra; Vemuri, Prashanthi; Atri, Alireza; Beckett, Laurel A.; Day, Gregory S.; Graff-Radford, Neill R.; Duara, Ranjan; Honig, Lawrence S.; Jones, David T.; Masdeu, Joseph C.; Mendez, Mario F.; Musiek, Erik; Onyike, Chiadi U.; Riddle, Meghan; Rogalski, Emily; Salloway, Stephen; Sha, Sharon J.; Turner, Raymond S.; Wingo, Thomas S.; Wolk, David A.; Womack, Kyle B.; Carrillo, Maria C.; Dickerson, Bradford C.; Rabinovici, Gil D.; Apostolova, Liana G.; LEADS Consortium; Neurology, School of MedicineIntroduction: One goal of the Longitudinal Early Onset Alzheimer's Disease Study (LEADS) is to define the fluid biomarker characteristics of early-onset Alzheimer's disease (EOAD). Methods: Cerebrospinal fluid (CSF) concentrations of Aβ1-40, Aβ1-42, total tau (tTau), pTau181, VILIP-1, SNAP-25, neurogranin (Ng), neurofilament light chain (NfL), and YKL-40 were measured by immunoassay in 165 LEADS participants. The associations of biomarker concentrations with diagnostic group and standard cognitive tests were evaluated. Results: Biomarkers were correlated with one another. Levels of CSF Aβ42/40, pTau181, tTau, SNAP-25, and Ng in EOAD differed significantly from cognitively normal and early-onset non-AD dementia; NfL, YKL-40, and VILIP-1 did not. Across groups, all biomarkers except SNAP-25 were correlated with cognition. Within the EOAD group, Aβ42/40, NfL, Ng, and SNAP-25 were correlated with at least one cognitive measure. Discussion: This study provides a comprehensive analysis of CSF biomarkers in sporadic EOAD that can inform EOAD clinical trial design.Item Creating the Pick's disease International Consortium: Association study of MAPT H2 haplotype with risk of Pick's disease(medRxiv, 2023-04-24) Valentino, Rebecca R.; Scotton, William J.; Roemer, Shanu F.; Lashley, Tammaryn; Heckman, Michael G.; Shoai, Maryam; Martinez-Carrasco, Alejandro; Tamvaka, Nicole; Walton, Ronald L.; Baker, Matthew C.; Macpherson, Hannah L.; Real, Raquel; Soto-Beasley, Alexandra I.; Mok, Kin; Revesz, Tamas; Warner, Thomas T.; Jaunmuktane, Zane; Boeve, Bradley F.; Christopher, Elizabeth A.; DeTure, Michael; Duara, Ranjan; Graff-Radford, Neill R.; Josephs, Keith A.; Knopman, David S.; Koga, Shunsuke; Murray, Melissa E.; Lyons, Kelly E.; Pahwa, Rajesh; Parisi, Joseph E.; Petersen, Ronald C.; Whitwell, Jennifer; Grinberg, Lea T.; Miller, Bruce; Schlereth, Athena; Seeley, William W.; Spina, Salvatore; Grossman, Murray; Irwin, David J.; Lee, Edward B.; Suh, EunRan; Trojanowski, John Q.; Van Deerlin, Vivianna M.; Wolk, David A.; Connors, Theresa R.; Dooley, Patrick M.; Frosch, Matthew P.; Oakley, Derek H.; Aldecoa, Iban; Balasa, Mircea; Gelpi, Ellen; Borrego-Écija, Sergi; de Eugenio Huélamo, Rosa Maria; Gascon-Bayarri, Jordi; Sánchez-Valle, Raquel; Sanz-Cartagena, Pilar; Piñol-Ripoll, Gerard; Molina-Porcel, Laura; Bigio, Eileen H.; Flanagan, Margaret E.; Gefen, Tamar; Rogalski, Emily J.; Weintraub, Sandra; Redding-Ochoa, Javier; Chang, Koping; Troncoso, Juan C.; Prokop, Stefan; Newell, Kathy L.; Ghetti, Bernardino; Jones, Matthew; Richardson, Anna; Robinson, Andrew C.; Roncaroli, Federico; Snowden, Julie; Allinson, Kieren; Green, Oliver; Rowe, James B.; Singh, Poonam; Beach, Thomas G.; Serrano, Geidy E.; Flowers, Xena E.; Goldman, James E.; Heaps, Allison C.; Leskinen, Sandra P.; Teich, Andrew F.; Black, Sandra E.; Keith, Julia L.; Masellis, Mario; Bodi, Istvan; King, Andrew; Sarraj, Safa-Al; Troakes, Claire; Halliday, Glenda M.; Hodges, John R.; Kril, Jillian J.; Kwok, John B.; Piguet, Olivier; Gearing, Marla; Arzberger, Thomas; Roeber, Sigrun; Attems, Johannes; Morris, Christopher M.; Thomas, Alan J.; Evers, Bret M.; White, Charles L.; Mechawar, Naguib; Sieben, Anne A.; Cras, Patrick P.; De Vil, Bart B.; De Deyn, Peter Paul P. P.; Duyckaerts, Charles; Le Ber, Isabelle; Seihean, Danielle; Turbant-Leclere, Sabrina; MacKenzie, Ian R.; McLean, Catriona; Cykowski, Matthew D.; Ervin, John F.; Wang, Shih-Hsiu J.; Graff, Caroline; Nennesmo, Inger; Nagra, Rashed M.; Riehl, James; Kovacs, Gabor G.; Giaccone, Giorgio; Nacmias, Benedetta; Neumann, Manuela; Ang, Lee-Cyn; Finger, Elizabeth C.; Blauwendraat, Cornelis; Nalls, Mike A.; Singleton, Andrew B.; Vitale, Dan; Cunha, Cristina; Carvalho, Agostinho; Wszolek, Zbigniew K.; Morris, Huw R.; Rademakers, Rosa; Hardy, John A.; Dickson, Dennis W.; Rohrer, Jonathan D.; Ross, Owen A.; Pathology and Laboratory Medicine, School of MedicineBackground: Pick's disease (PiD) is a rare and predominantly sporadic form of frontotemporal dementia that is classified as a primary tauopathy. PiD is pathologically defined by argyrophilic inclusion Pick bodies and ballooned neurons in the frontal and temporal brain lobes. PiD is characterised by the presence of Pick bodies which are formed from aggregated, hyperphosphorylated, 3-repeat tau proteins, encoded by the MAPT gene. The MAPT H2 haplotype has consistently been associated with a decreased disease risk of the 4-repeat tauopathies of progressive supranuclear palsy and corticobasal degeneration, however its role in susceptibility to PiD is unclear. The primary aim of this study was to evaluate the association between MAPT H2 and risk of PiD. Methods: We established the Pick's disease International Consortium (PIC) and collected 338 (60.7% male) pathologically confirmed PiD brains from 39 sites worldwide. 1,312 neurologically healthy clinical controls were recruited from Mayo Clinic Jacksonville, FL (N=881) or Rochester, MN (N=431). For the primary analysis, subjects were directly genotyped for MAPT H1-H2 haplotype-defining variant rs8070723. In secondary analysis, we genotyped and constructed the six-variant MAPT H1 subhaplotypes (rs1467967, rs242557, rs3785883, rs2471738, rs8070723, and rs7521). Findings: Our primary analysis found that the MAPT H2 haplotype was associated with increased risk of PiD (OR: 1.35, 95% CI: 1.12-1.64 P=0.002). In secondary analysis involving H1 subhaplotypes, a protective association with PiD was observed for the H1f haplotype (0.0% vs. 1.2%, P=0.049), with a similar trend noted for H1b (OR: 0.76, 95% CI: 0.58-1.00, P=0.051). The 4-repeat tauopathy risk haplotype MAPT H1c was not associated with PiD susceptibility (OR: 0.93, 95% CI: 0.70-1.25, P=0.65). Interpretation: The PIC represents the first opportunity to perform relatively large-scale studies to enhance our understanding of the pathobiology of PiD. This study demonstrates that in contrast to its protective role in 4R tauopathies, the MAPT H2 haplotype is associated with an increased risk of PiD. This finding is critical in directing isoform-related therapeutics for tauopathies.Item Genome-wide analyses as part of the international FTLD-TDP whole-genome sequencing consortium reveals novel disease risk factors and increases support for immune dysfunction in FTLD(Springer, 2019-02-09) Pottier, Cyril; Ren, Yingxue; Perkerson, Ralph B.; Baker, Matt; Jenkins, Gregory D.; van Blitterswijk, Marka; DeJesus-Hernandez, Mariely; van Rooij, Jeroen G. J.; Murray, Melissa E.; Christopher, Elizabeth; McDonnell, Shannon K.; Fogarty, Zachary; Batzler, Anthony; Tian, Shulan; Vicente, Cristina T.; Matchett, Billie; Karydas, Anna M.; Hsiung, Ging-Yuek Robin; Seelaar, Harro; Mol, Merel O.; Finger, Elizabeth C.; Graff, Caroline; Öijerstedt, Linn; Neumann, Manuela; Heutink, Peter; Synofzik, Matthis; Matthis, Carlo; Prudlo, Johannes; Rizzu, Patrizia; Simon-Sanchez, Javier; Edbauer, Dieter; Roeber, Sigrun; Diehl-Schmid, Janine; Evers, Bret M.; King, Andrew; Mesulam, M. Marsel; Weintraub, Sandra; Geula, Changiz; Bieniek, Kevin F.; Petrucelli, Leonard; Ahern, Geoffrey L.; Reiman, Eric M.; Woodruff, Bryan K.; Caselli, Richard J.; Huey, Edward D.; Farlow, Martin R.; Grafman, Jordan; Mead, Simon; Grinberg, Lea T.; Spina, Salvatore; Grossman, Murray; Irwin, David J.; Lee, Edward B.; Suh, EunRan; Snowden, Julie; Mann, David; Ertekin-Taner, Nilufer; Uitti, Ryan J.; Wszolek, Zbigniew K.; Josephs, Keith A.; Parisi, Joseph E.; Knopman, David S.; Petersen, Ronald C.; Hodges, John R.; Piguet, Olivier; Geier, Ethan G.; Yokoyama, Jennifer S.; Rissman, Robert A.; Rogaeva, Ekaterina; Keith, Julia; Zinman, Lorne; Tartaglia, Maria Carmela; Cairns, Nigel J.; Cruchaga, Carlos; Ghetti, Bernardino; Kofler, Julia; Lopez, Oscar L.; Beach, Thomas G.; Arzberger, Thomas; Herms, Jochen; Honig, Lawrence S.; Vonsattel, Jean Paul; Halliday, Glenda M.; Kwok, John B.; White, Charles L.; Gearing, Marla; Glass, Jonathan; Rollinson, Sara; Pickering-Brown, Stuart; Rohrer, Jonathan D.; Trojanowski, John Q.; Van Deerlin, Vivianna; Bigio, Eileen H.; Troakes, Claire; Al-Sarraj, Safa; Asmann, Yan; Miller, Bruce L.; Graff-Radford, Neill R.; Boeve, Bradley F.; Seeley, William W.; Mackenzie, Ian R. A.; van Swieten, John C.; Dickson, Dennis W.; Biernacka, Joanna M.; Rademakers, Rosa; Neurology, School of MedicineFrontotemporal lobar degeneration with neuronal inclusions of the TAR DNA-binding protein 43 (FTLD-TDP) represents the most common pathological subtype of FTLD. We established the international FTLD-TDP whole genome sequencing consortium to thoroughly characterize the known genetic causes of FTLD-TDP and identify novel genetic risk factors. Through the study of 1,131 unrelated Caucasian patients, we estimated that C9orf72 repeat expansions and GRN loss-of-function mutations account for 25.5% and 13.9% of FTLD-TDP patients, respectively. Mutations in TBK1 (1.5%) and other known FTLD genes (1.4%) were rare, and the disease in 57.7% of FTLD-TDP patients was unexplained by the known FTLD genes. To unravel the contribution of common genetic factors to the FTLD-TDP etiology in these patients, we conducted a two-stage association study comprising the analysis of whole-genome sequencing data from 517 FTLD-TDP patients and 838 controls, followed by targeted genotyping of the most associated genomic loci in 119 additional FTLD-TDP patients and 1653 controls. We identified three genome-wide significant FTLD-TDP risk loci: one new locus at chromosome 7q36 within the DPP6 gene led by rs118113626 (pvalue=4.82e-08, OR=2.12), and two known loci: UNC13A, led by rs1297319 (pvalue=1.27e-08, OR=1.50) and HLA-DQA2 led by rs17219281 (pvalue=3.22e-08, OR=1.98). While HLA represents a locus previously implicated in clinical FTLD and related neurodegenerative disorders, the association signal in our study is independent from previously reported associations. Through inspection of our whole genome sequence data for genes with an excess of rare loss-of-function variants in FTLD-TDP patients (n≥3) as compared to controls (n=0), we further discovered a possible role for genes functioning within the TBK1-related immune pathway (e.g. DHX58, TRIM21, IRF7) in the genetic etiology of FTLD-TDP. Together, our study based on the largest cohort of unrelated FTLD-TDP patients assembled to date provides a comprehensive view of the genetic landscape of FTLD-TDP, nominates novel FTLD-TDP risk loci, and strongly implicates the immune pathway in FTLD-TDP pathogenesis.Item Genome-wide association study of brain biochemical phenotypes reveals distinct genetic architecture of Alzheimer's disease related proteins(BMC, 2023-01-07) Oatman, Stephanie R.; Reddy, Joseph S.; Quicksall, Zachary; Carrasquillo, Minerva M.; Wang, Xue; Liu, Chia‑Chen; Yamazaki, Yu; Nguyen, Thuy T.; Malphrus, Kimberly; Heckman, Michael; Biswas, Kristi; Nho, Kwangsik; Baker, Matthew; Martens, Yuka A.; Zhao, Na; Kim, Jun Pyo; Risacher, Shannon L.; Rademakers, Rosa; Saykin, Andrew J.; DeTure, Michael; Murray, Melissa E.; Kanekiyo, Takahisa; Alzheimer’s Disease Neuroimaging Initiative; Dickson, Dennis W.; Bu, Guojun; Allen, Mariet; Ertekin‑Taner, Nilüfer; Radiology and Imaging Sciences, School of MedicineBackground: Alzheimer's disease (AD) is neuropathologically characterized by amyloid-beta (Aβ) plaques and neurofibrillary tangles. The main protein components of these hallmarks include Aβ40, Aβ42, tau, phosphor-tau, and APOE. We hypothesize that genetic variants influence the levels and solubility of these AD-related proteins in the brain; identifying these may provide key insights into disease pathogenesis. Methods: Genome-wide genotypes were collected from 441 AD cases, imputed to the haplotype reference consortium (HRC) panel, and filtered for quality and frequency. Temporal cortex levels of five AD-related proteins from three fractions, buffer-soluble (TBS), detergent-soluble (Triton-X = TX), and insoluble (Formic acid = FA), were available for these same individuals. Variants were tested for association with each quantitative biochemical measure using linear regression, and GSA-SNP2 was used to identify enriched Gene Ontology (GO) terms. Implicated variants and genes were further assessed for association with other relevant variables. Results: We identified genome-wide significant associations at seven novel loci and the APOE locus. Genes and variants at these loci also associate with multiple AD-related measures, regulate gene expression, have cell-type specific enrichment, and roles in brain health and other neuropsychiatric diseases. Pathway analysis identified significant enrichment of shared and distinct biological pathways. Conclusions: Although all biochemical measures tested reflect proteins core to AD pathology, our results strongly suggest that each have unique genetic architecture and biological pathways that influence their specific biochemical states in the brain. Our novel approach of deep brain biochemical endophenotype GWAS has implications for pathophysiology of proteostasis in AD that can guide therapeutic discovery efforts focused on these proteins.Item Gliovascular transcriptional perturbations in Alzheimer's disease reveal molecular mechanisms of blood brain barrier dysfunction(Springer Nature, 2024-06-20) İş, Özkan; Wang, Xue; Reddy, Joseph S.; Min, Yuhao; Yilmaz, Elanur; Bhattarai, Prabesh; Patel, Tulsi; Bergman, Jeremiah; Quicksall, Zachary; Heckman, Michael G.; Tutor-New, Frederick Q.; Demirdogen, Birsen Can; White, Launia; Koga, Shunsuke; Krause, Vincent; Inoue, Yasuteru; Kanekiyo, Takahisa; Cosacak, Mehmet Ilyas; Nelson, Nastasia; Lee, Annie J.; Vardarajan, Badri; Mayeux, Richard; Kouri, Naomi; Deniz, Kaancan; Carnwath, Troy; Oatman, Stephanie R.; Lewis-Tuffin, Laura J.; Nguyen, Thuy; Alzheimer’s Disease Neuroimaging Initiative; Carrasquillo, Minerva M.; Graff-Radford, Jonathan; Petersen, Ronald C.; Jack, Clifford R., Jr.; Kantarci, Kejal; Murray, Melissa E.; Nho, Kwangsik; Saykin, Andrew J.; Dickson, Dennis W.; Kizil, Caghan; Allen, Mariet; Ertekin-Taner, Nilüfer; Radiology and Imaging Sciences, School of MedicineTo uncover molecular changes underlying blood-brain-barrier dysfunction in Alzheimer’s disease, we performed single nucleus RNA sequencing in 24 Alzheimer’s disease and control brains and focused on vascular and astrocyte clusters as main cell types of blood-brain-barrier gliovascular-unit. The majority of the vascular transcriptional changes were in pericytes. Of the vascular molecular targets predicted to interact with astrocytic ligands, SMAD3, upregulated in Alzheimer’s disease pericytes, has the highest number of ligands including VEGFA, downregulated in Alzheimer’s disease astrocytes. We validated these findings with external datasets comprising 4,730 pericyte and 150,664 astrocyte nuclei. Blood SMAD3 levels are associated with Alzheimer’s disease-related neuroimaging outcomes. We determined inverse relationships between pericytic SMAD3 and astrocytic VEGFA in human iPSC and zebrafish models. Here, we detect vast transcriptome changes in Alzheimer’s disease at the gliovascular-unit, prioritize perturbed pericytic SMAD3-astrocytic VEGFA interactions, and validate these in cross-species models to provide a molecular mechanism of blood-brain-barrier disintegrity in Alzheimer’s disease.Item Global neuropathologic severity of Alzheimer's disease and locus coeruleus vulnerability influences plasma phosphorylated tau levels(Springer, 2022-12-27) Murray, Melissa E.; Moloney, Christina M.; Kouri, Naomi; Syrjanen, Jeremy A.; Matchett, Billie J.; Rothberg, Darren M.; Tranovich, Jessica F.; Hicks Sirmans, Tiffany N.; Wiste, Heather J.; Boon, Baayla D. C.; Nguyen, Aivi T.; Reichard, R. Ross; Dickson, Dennis W.; Lowe, Val J.; Dage, Jeffrey L.; Petersen, Ronald C.; Jack, Clifford R., Jr.; Knopman , David S.; Vemuri, Prashanthi; Graff-Radford, Jonathan; Mielke, Michelle M.; Neurology, School of MedicineBackground Advances in ultrasensitive detection of phosphorylated tau (p-tau) in plasma has enabled the use of blood tests to measure Alzheimer’s disease (AD) biomarker changes. Examination of postmortem brains of participants with antemortem plasma p-tau levels remains critical to understanding comorbid and AD-specific contribution to these biomarker changes. Methods We analyzed 35 population-based Mayo Clinic Study of Aging participants with plasma p-tau at threonine 181 and threonine 217 (p-tau181, p-tau217) available within 3 years of death. Autopsied participants included cognitively unimpaired, mild cognitive impairment, AD dementia, and non-AD neurodegenerative disorders. Global neuropathologic scales of tau, amyloid-β, TDP-43, and cerebrovascular disease were examined. Regional digital pathology measures of tau (phosphorylated threonine 181 and 217 [pT181, pT217]) and amyloid-β (6F/3D) were quantified in hippocampus and parietal cortex. Neurotransmitter hubs reported to influence development of tangles (nucleus basalis of Meynert) and amyloid-β plaques (locus coeruleus) were evaluated. Results The strongest regional associations were with parietal cortex for tau burden (p-tau181 R = 0.55, p = 0.003; p-tau217 R = 0.66, p < 0.001) and amyloid-β burden (p-tau181 R = 0.59, p < 0.001; p-tau217 R = 0.71, p < 0.001). Linear regression analysis of global neuropathologic scales explained 31% of variability in plasma p-tau181 (Adj. R2 = 0.31) and 59% in plasma p-tau217 (Adj. R2 = 0.59). Neither TDP-43 nor cerebrovascular disease global scales independently contributed to variability. Global scales of tau pathology (β-coefficient = 0.060, p = 0.016) and amyloid-β pathology (β-coefficient = 0.080, p < 0.001) independently predicted plasma p-tau217 when modeled together with co-pathologies, but only amyloid-β (β-coefficient = 0.33, p = 0.021) significantly predicted plasma p-tau181. While nucleus basalis of Meynert neuron count/mm2 was not associated with plasma p-tau levels, a lower locus coeruleus neuron count/mm2 was associated with higher plasma p-tau181 (R = -0.50, p = 0.007) and higher plasma p-tau217 (R = -0.55, p = 0.002). Cognitive scores (Adj. R2 = 0.25–0.32) were predicted by the global tau scale, but not by the global amyloid-β scale or plasma p-tau when modeled simultaneously. Conclusions Higher soluble plasma p-tau levels may be the result of an intersection between insoluble deposits of amyloid-β and tau accumulation in brain, and may be associated with locus coeruleus degeneration.Item Influence of amyloid and diagnostic syndrome on non-traditional memory scores in early-onset Alzheimer's disease(Wiley, 2023) Bushnell, Justin; Hammers, Dustin B.; Aisen, Paul; Dage, Jeffrey L.; Eloyan, Ani; Foroud, Tatiana; Grinberg, Lea T.; Iaccarino, Leonardo; Jack, Clifford R., Jr.; Kirby, Kala; Kramer, Joel; Koeppe, Robert; Kukull, Walter A.; La Joie, Renaud; Mundada, Nidhi S.; Murray, Melissa E.; Nudelman, Kelly; Rumbaugh, Malia; Soleimani-Meigooni, David N.; Toga, Arthur; Touroutoglou, Alexandra; Vemuri, Prashanthi; Atri, Alireza; Day, Gregory S.; Duara, Ranjan; Graff-Radford, Neill R.; Honig, Lawrence S.; Jones, David T.; Masdeu, Joseph; Mendez, Mario; Musiek, Erik; Onyike, Chiadi U.; Riddle, Meghan; Rogalski, Emily; Salloway, Steven; Sha, Sharon; Turner, Raymond S.; Wingo, Thomas S.; Wolk, David A.; Carrillo, Maria C.; Dickerson, Bradford C.; Rabinovici, Gil D.; Apostolova, Liana G.; Clark, David G.; LEADS Consortium; Neurology, School of MedicineIntroduction: The Rey Auditory Verbal Learning Test (RAVLT) is a useful neuropsychological test for describing episodic memory impairment in dementia. However, there is limited research on its utility in early-onset Alzheimer's disease (EOAD). We assess the influence of amyloid and diagnostic syndrome on several memory scores in EOAD. Methods: We transcribed RAVLT recordings from 303 subjects in the Longitudinal Early-Onset Alzheimer's Disease Study. Subjects were grouped by amyloid status and syndrome. Primacy, recency, J-curve, duration, stopping time, and speed score were calculated and entered into linear mixed effects models as dependent variables. Results: Compared with amyloid negative subjects, positive subjects exhibited effects on raw score, primacy, recency, and stopping time. Inter-syndromic differences were noted with raw score, primacy, recency, J-curve, and stopping time. Discussion: RAVLT measures are sensitive to the effects of amyloid and syndrome in EOAD. Future work is needed to quantify the predictive value of these scores. Highlights: RAVLT patterns characterize various presentations of EOAD and EOnonAD Amyloid impacts raw score, primacy, recency, and stopping time Timing-based scores add value over traditional count-based scores.