ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Morris, Margaret A."

Now showing 1 - 6 of 6
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    12-Lipoxygenase governs the innate immune pathogenesis of islet inflammation and autoimmune diabetes
    (The American Society for Clinical Investigation, 2021-07-22) Kulkarni, Abhishek; Pineros, Annie R.; Walsh, Melissa A.; Casimiro, Isabel; Ibrahim, Sara; Hernandez-Perez, Marimar; Orr, Kara S.; Glenn, Lindsey; Nadler, Jerry L.; Morris, Margaret A.; Tersey, Sarah A.; Mirmira, Raghavendra G.; Anderson, Ryan M.; Pediatrics, School of Medicine
    Macrophages and related myeloid cells are innate immune cells that participate in the early islet inflammation of type 1 diabetes (T1D). The enzyme 12-lipoxygenase (12-LOX) catalyzes the formation of proinflammatory eicosanoids, but its role and mechanisms in myeloid cells in the pathogenesis of islet inflammation have not been elucidated. Leveraging a model of islet inflammation in zebrafish, we show here that macrophages contribute significantly to the loss of β cells and the subsequent development of hyperglycemia. The depletion or inhibition of 12-LOX in this model resulted in reduced macrophage infiltration into islets and the preservation of β cell mass. In NOD mice, the deletion of the gene encoding 12-LOX in the myeloid lineage resulted in reduced insulitis with reductions in proinflammatory macrophages, a suppressed T cell response, preserved β cell mass, and almost complete protection from the development of T1D. 12-LOX depletion caused a defect in myeloid cell migration, a function required for immune surveillance and tissue injury responses. This effect on migration resulted from the loss of the chemokine receptor CXCR3. Transgenic expression of the gene encoding CXCR3 rescued the migratory defect in zebrafish 12-LOX morphants. Taken together, our results reveal a formative role for innate immune cells in the early pathogenesis of T1D and identify 12-LOX as an enzyme required to promote their prodiabetogenic phenotype in the context of autoimmunity.
  • Loading...
    Thumbnail Image
    Item
    Abnormalities in proinsulin processing in islets from individuals with longstanding T1D
    (Elsevier, 2019-11) Sims, Emily K.; Syed, Farooq; Nyalwidhe, Julius; Bahnson, Henry T.; Haataja, Leena; Speake, Cate; Morris, Margaret A.; Balamurugan, Appakalai N.; Mirmira, Raghavendra G.; Nadler, Jerry; Mastracci, Teresa L.; Arvan, Peter; Greenbaum, Carla J.; Evans-Molina, Carmella; Pediatrics, School of Medicine
    We recently described the persistence of detectable serum proinsulin in a large majority of individuals with longstanding type 1 diabetes (T1D), including individuals with undetectable serum C-peptide. Here, we sought to further explore the mechanistic etiologies of persistent proinsulin secretion in T1D at the level of the islet, using tissues obtained from human donors. Immunostaining for proinsulin and insulin was performed on human pancreatic sections from the Network for Pancreatic Organ Donors with Diabetes (nPOD) collection (n = 24). Differential proinsulin processing enzyme expression was analyzed using mass spectrometry analysis of human islets isolated from pancreatic sections with laser capture microdissection (n = 6). Proinsulin processing enzyme mRNA levels were assessed using quantitative real-time PCR in isolated human islets (n = 10) treated with or without inflammatory cytokines. Compared to nondiabetic controls, immunostaining among a subset (4/9) of insulin positive T1D donor islets revealed increased numbers of cells with proinsulin-enriched, insulin-poor staining. T1D donor islets also exhibited increased proinsulin fluorescence intensity relative to insulin fluorescence intensity. Laser capture microdissection followed by mass spectrometry revealed reductions in the proinsulin processing enzymes prohormone convertase 1/3 (PC1/3) and carboxypeptidase E (CPE) in T1D donors. Twenty-four hour treatment of human islets with inflammatory cytokines reduced mRNA expression of the processing enzymes PC1/3, PC2, and CPE. Taken together, these data provide new mechanistic insight into altered proinsulin processing in long-duration T1D and suggest that reduced β cell prohormone processing is associated with proinflammatory cytokine-induced reductions in proinsulin processing enzyme expression.
  • Loading...
    Thumbnail Image
    Item
    Deletion of 12/15-Lipoxygenase Alters Macrophage and Islet Function in NOD-Alox15null Mice, Leading to Protection against Type 1 Diabetes Development
    (Public Library of Science, 2013) Green-Mitchell, Shamina M.; Tersey, Sarah A.; Cole, Banumathi K.; Ma, Kaiwen; Kuhn, Norine S.; Duong Cunningham, Tina; Maybee, Nelly A.; Chakrabarti, Swarup K.; McDuffie, Marcia; Taylor-Fishwick, David A.; Mirmira, Raghavendra G.; Nadler, Jerry L.; Morris, Margaret A.; Pediatrics, School of Medicine
    Aims: Type 1 diabetes (T1D) is characterized by autoimmune depletion of insulin-producing pancreatic beta cells. We showed previously that deletion of the 12/15-lipoxygenase enzyme (12/15-LO, Alox15 gene) in NOD mice leads to nearly 100 percent protection from T1D. In this study, we test the hypothesis that cytokines involved in the IL-12/12/15-LO axis affect both macrophage and islet function, which contributes to the development of T1D. Methods: 12/15-LO expression was clarified in immune cells by qRT-PCR, and timing of expression was tested in islets using qRT-PCR and Western blotting. Expression of key proinflammatory cytokines and pancreatic transcription factors was studied in NOD and NOD-Alox15(null) macrophages and islets using qRT-PCR. The two mouse strains were also assessed for the ability of splenocytes to transfer diabetes in an adoptive transfer model, and beta cell mass. Results: 12/15-LO is expressed in macrophages, but not B and T cells of NOD mice. In macrophages, 12/15-LO deletion leads to decreased proinflammatory cytokine mRNA and protein levels. Furthermore, splenocytes from NOD-Alox15(null) mice are unable to transfer diabetes in an adoptive transfer model. In islets, expression of 12/15-LO in NOD mice peaks at a crucial time during insulitis development. The absence of 12/15-LO results in maintenance of islet health with respect to measurements of islet-specific transcription factors, markers of islet health, proinflammatory cytokines, and beta cell mass. Conclusions: These results suggest that 12/15-LO affects islet and macrophage function, causing inflammation, and leading to autoimmunity and reduced beta cell mass.
  • Loading...
    Thumbnail Image
    Item
    Proinflammatory signaling in islet β cells propagates invasion of pathogenic immune cells in autoimmune diabetes
    (Elsevier, 2022) Piñeros, Annie R.; Kulkarni, Abhishek; Gao, Hongyu; Orr, Kara S.; Glenn, Lindsey; Huang, Fei; Liu, Yunlong; Gannon, Maureen; Syed, Farooq; Wu, Wenting; Anderson, Cara M.; Evans-Molina, Carmella; McDuffie, Marcia; Nadler, Jerry L.; Morris, Margaret A.; Mirmira, Raghavendra G.; Tersey, Sarah A.; Pediatrics, School of Medicine
    Type 1 diabetes is a disorder of immune tolerance that leads to death of insulin-producing islet β cells. We hypothesize that inflammatory signaling within β cells promotes progression of autoimmunity within the islet microenvironment. To test this hypothesis, we deleted the proinflammatory gene encoding 12/15-lipoxygenase (Alox15) in β cells of non-obese diabetic mice at a pre-diabetic time point when islet inflammation is a feature. Deletion of Alox15 leads to preservation of β cell mass, reduces populations of infiltrating T cells, and protects against spontaneous autoimmune diabetes in both sexes. Mice lacking Alox15 in β cells exhibit an increase in a population of β cells expressing the gene encoding the protein programmed death ligand 1 (PD-L1), which engages receptors on immune cells to suppress autoimmunity. Delivery of a monoclonal antibody against PD-L1 recovers the diabetes phenotype in knockout animals. Our results support the contention that inflammatory signaling in β cells promotes autoimmunity during type 1 diabetes progression.
  • Loading...
    Thumbnail Image
    Item
    Proinsulin Secretion Is a Persistent Feature of Type 1 Diabetes
    (American Diabetes Association, 2019-02) Sims, Emily K.; Bahnson, Henry T.; Nyalwidhe, Julius; Haataja, Leena; Davis, Asa K.; Speake, Cate; DiMeglio, Linda A.; Blum, Janice; Morris, Margaret A.; Mirmira, Raghavendra G.; Nadler, Jerry; Mastracci, Teresa L.; Marcovina, Santica; Qian, Wei-Jun; Yi, Lian; Swensen, Adam C.; Yip-Schneider, Michele; Schmidt, C. Max; Considine, Robert V.; Arvan, Peter; Greenbaum, Carla J.; Evans-Molina, Carmella; T1D Exchange Residual C-peptide Study Group; Pediatrics, School of Medicine
    OBJECTIVE: Abnormally elevated proinsulin secretion has been reported in type 2 and early type 1 diabetes when significant C-peptide is present. We questioned whether individuals with long-standing type 1 diabetes and low or absent C-peptide secretory capacity retained the ability to make proinsulin. RESEARCH DESIGN AND METHODS: C-peptide and proinsulin were measured in fasting and stimulated sera from 319 subjects with long-standing type 1 diabetes (≥3 years) and 12 control subjects without diabetes. We considered three categories of stimulated C-peptide: 1) C-peptide positive, with high stimulated values ≥0.2 nmol/L; 2) C-peptide positive, with low stimulated values ≥0.017 but <0.2 nmol/L; and 3) C-peptide <0.017 nmol/L. Longitudinal samples were analyzed from C-peptide-positive subjects with diabetes after 1, 2, and 4 years. RESULTS: Of individuals with long-standing type 1 diabetes, 95.9% had detectable serum proinsulin (>3.1 pmol/L), while 89.9% of participants with stimulated C-peptide values below the limit of detection (<0.017 nmol/L; n = 99) had measurable proinsulin. Proinsulin levels remained stable over 4 years of follow-up, while C-peptide decreased slowly during longitudinal analysis. Correlations between proinsulin with C-peptide and mixed-meal stimulation of proinsulin were found only in subjects with high stimulated C-peptide values (≥0.2 nmol/L). Specifically, increases in proinsulin with mixed-meal stimulation were present only in the group with high stimulated C-peptide values, with no increases observed among subjects with low or undetectable (<0.017 nmol/L) residual C-peptide. CONCLUSIONS: In individuals with long-duration type 1 diabetes, the ability to secrete proinsulin persists, even in those with undetectable serum C-peptide.
  • Loading...
    Thumbnail Image
    Item
    Response to Comment on Sims et al. Proinsulin Secretion Is a Persistent Feature of Type 1 Diabetes. Diabetes Care 2019;42:258–264
    (American Diabetes Association, 2019-05) Sims, Emily K.; Bahnson, Henry T.; Nyalwidhe, Julius; Haataja, Leena; Davis, Asa K.; Speake, Cate; DiMeglio, Linda A.; Blum, Janice; Morris, Margaret A.; Mirmira, Raghavendra G.; Nadler, Jerry; Mastracci, Teresa L.; Marcovina, Santica; Qian, Wei-Jun; Yi, Lian; Swensen, Adam C.; Yip-Schneider, Michele; Schmidt, C. Max; Considine, Robert V.; Arvan, Peter; Greenbaum, Carla J.; Evans-Molina, Carmella; Pediatrics, School of Medicine
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University