- Browse by Author
Browsing by Author "Mohamed, Asmaa"
Now showing 1 - 1 of 1
Results Per Page
Sort Options
Item Sclerostin Depletion Induces Inflammation in the Bone Marrow of Mice(MDPI, 2021-08-24) Donham, Cristine; Chicana, Betsabel; Robling, Alexander G.; Mohamed, Asmaa; Elizaldi, Sonny; Chi, Michael; Freeman, Brian; Millan, Alberto; Murugesh, Deepa K.; Hum, Nicholas R.; Sebastian, Aimy; Loots, Gabriela G.; Manilay, Jennifer O.; Anatomy and Cell Biology, School of MedicineRomosozumab, a humanized monoclonal antibody specific for sclerostin (SOST), has been approved for treatment of postmenopausal women with osteoporosis at a high risk for fracture. Previous work in sclerostin global knockout (Sost−/−) mice indicated alterations in immune cell development in the bone marrow (BM), which could be a possible side effect in romosozumab-treated patients. Here, we examined the effects of short-term sclerostin depletion in the BM on hematopoiesis in young mice receiving sclerostin antibody (Scl-Ab) treatment for 6 weeks, and the effects of long-term Sost deficiency on wild-type (WT) long-term hematopoietic stem cells transplanted into older cohorts of Sost−/− mice. Our analyses revealed an increased frequency of granulocytes in the BM of Scl-Ab-treated mice and WT→Sost−/− chimeras, indicating myeloid-biased differentiation in Sost-deficient BM microenvironments. This myeloid bias extended to extramedullary hematopoiesis in the spleen and was correlated with an increase in inflammatory cytokines TNFα, IL-1α, and MCP-1 in Sost−/− BM serum. Additionally, we observed alterations in erythrocyte differentiation in the BM and spleen of Sost−/− mice. Taken together, our current study indicates novel roles for Sost in the regulation of myelopoiesis and control of inflammation in the BM.