- Browse by Author
Browsing by Author "Meyer, Jill A."
Now showing 1 - 8 of 8
Results Per Page
Sort Options
Item Characterization of 11C-GSK1482160 for Targeting the P2X7 Receptor as a Biomarker for Neuroinflammation(SNMMI, 2017-03) Territo, Paul R.; Meyer, Jill A.; Peters, Jonathan S.; Riley, Amanda A.; McCarthy, Brian P.; Gao, Mingzhang; Wang, Min; Green, Mark A.; Zheng, Qi-Huang; Hutchins, Gary D.; Radiology and Imaging Sciences, School of MedicineThe purinergic receptor subtype 7 (P2X7R) represents a novel molecular target for imaging neuroinflammation via PET. GSK1482160, a potent P2X7R antagonist, has high receptor affinity, high blood–brain barrier penetration, and the ability to be radiolabeled with 11C. We report the initial physical and biologic characterization of this novel ligand. Methods: 11C-GSK1482160 was synthesized according to published methods. Cell density studies were performed on human embryonic kidney cell lines expressing human P2X7R (HEK293-hP2X7R) and underwent Western blotting, an immunofluorescence assay, and radioimmunohistochemistry analysis using P2X7R polyclonal antibodies. Receptor density and binding potential were determined by saturation and association–disassociation kinetics, respectively. Peak immune response to lipopolysaccharide treatment in mice was determined in time course studies and analyzed via Iba1 and P2X7R Western blotting and Iba1 immunohistochemistry. Whole-animal biodistribution studies were performed on saline- or lipopolysaccharide-treated mice at 15, 30, and 60 min after radiotracer administration. Dynamic in vivo PET/CT was performed on the mice at 72 h after administration of saline, lipopolysaccharide, or lipopolysaccharide + blocking, and 2-compartment, 5-parameter tracer kinetic modeling of brain regions was performed. Results: P2X7R changed linearly with concentrations or cell numbers. For high-specific-activity 11C-GSK1482160, receptor density and Kd were 1.15 ± 0.12 nM and 3.03 ± 0.10 pmol/mg, respectively, in HEK293-hP2X7R membranes. Association constant kon, dissociation constant koff, and binding potential (kon/koff) in HEK293-hP2X7R cells were 0.2312 ± 0.01542 min−1⋅nM−1, 0.2547 ± 0.0155 min−1, and 1.0277 ± 0.207, respectively. Whole-brain Iba1 expression in lipopolysaccharide-treated mice peaked by 72 h on immunohistochemistry, and Western blot analysis of P2X7R for saline- and lipopolysaccharide-treated brain sections showed a respective 1.8- and 1.7-fold increase in signal enhancement at 72 h. Biodistribution of 11C-GSK1482160 in saline- and lipopolysaccharide-treated mice at 72 h was statistically significant across all tissues studied. In vivo dynamic 11C-GSK1482160 PET/CT of mice at 72 h after administration of saline, lipopolysaccharide, or lipopolysaccharide + blocking showed a 3.2-fold increase and 97% blocking by 30 min. The total distribution volumes for multiple cortical regions and the hippocampus showed statistically significant increases and were blocked by an excess of authentic standard GSK1482160. Conclusion: The current study provides compelling data that support the suitability of 11C-GSK1482160 as a radioligand targeting P2X7R, a biomarker of neuroinflammation.Item Plcg2M28L Interacts With High Fat/High Sugar Diet to Accelerate Alzheimer's Disease-Relevant Phenotypes in Mice(Frontiers Media, 2022-06-24) Oblak, Adrian L.; Kotredes, Kevin P.; Pandey, Ravi S.; Reagan, Alaina M.; Ingraham, Cynthia; Perkins, Bridget; Lloyd, Christopher; Baker, Deborah; Lin, Peter B.; Soni, Disha M.; Tsai, Andy P.; Persohn, Scott A.; Bedwell, Amanda A.; Eldridge, Kierra; Speedy, Rachael; Meyer, Jill A.; Peters, Johnathan S.; Figueiredo, Lucas L.; Sasner, Michael; Territo, Paul R.; Sukoff Rizzo, Stacey J.; Carter, Gregory W.; Lamb, Bruce T.; Howell, Gareth R.; Radiology and Imaging Sciences, School of MedicineObesity is recognized as a significant risk factor for Alzheimer's disease (AD). Studies have supported the notion that obesity accelerates AD-related pathophysiology in mouse models of AD. The majority of studies, to date, have focused on the use of early-onset AD models. Here, we evaluate the impact of genetic risk factors on late-onset AD (LOAD) in mice fed with a high fat/high sugar diet (HFD). We focused on three mouse models created through the IU/JAX/PITT MODEL-AD Center. These included a combined risk model with APOE4 and a variant in triggering receptor expressed on myeloid cells 2 (Trem2R47H ). We have termed this model, LOAD1. Additional variants including the M28L variant in phospholipase C Gamma 2 (Plcg2M28L ) and the 677C > T variant in methylenetetrahydrofolate reductase (Mthfr 677C > T ) were engineered by CRISPR onto LOAD1 to generate LOAD1.Plcg2M28L and LOAD1.Mthfr 677C > T . At 2 months of age, animals were placed on an HFD that induces obesity or a control diet (CD), until 12 months of age. Throughout the study, blood was collected to assess the levels of cholesterol and glucose. Positron emission tomography/computed tomography (PET/CT) was completed prior to sacrifice to image for glucose utilization and brain perfusion. After the completion of the study, blood and brains were collected for analysis. As expected, animals fed a HFD, showed a significant increase in body weight compared to those fed a CD. Glucose increased as a function of HFD in females only with cholesterol increasing in both sexes. Interestingly, LOAD1.Plcg2M28L demonstrated an increase in microglia density and alterations in regional brain glucose and perfusion on HFD. These changes were not observed in LOAD1 or LOAD1.Mthfr 677C > T animals fed with HFD. Furthermore, LOAD1.Plcg2M28L but not LOAD1.Mthfr 677C > T or LOAD1 animals showed transcriptomics correlations with human AD modules. Our results show that HFD affects the brain in a genotype-specific manner. Further insight into this process may have significant implications for the development of lifestyle interventions for the treatment of AD.Item Prophylactic evaluation of verubecestat on disease- and symptom-modifying effects in 5XFAD mice(Alzheimer’s Association, 2022-07-14) Oblak, Adrian L.; Cope, Zackary A.; Quinney, Sara K.; Pandey, Ravi S.; Biesdorf, Carla; Masters, Andi R.; Onos, Kristen D.; Haynes, Leslie; Keezer, Kelly J.; Meyer, Jill A.; Peters, Jonathan S.; Persohn, Scott A.; Bedwell, Amanda A.; Eldridge, Kierra; Speedy, Rachael; Little, Gabriela; Williams, Sean-Paul; Noarbe, Brenda; Obenaus, Andre; Sasner, Michael; Howell, Gareth R.; Carter, Gregory W.; Williams, Harriet; Lamb, Bruce T.; Territo, Paul R.; Sukoff Rizzo, Stacey J.; Radiology and Imaging Sciences, School of MedicineIntroduction: Alzheimer's disease (AD) is the most common form of dementia. Beta-secretase (BACE) inhibitors have been proposed as potential therapeutic interventions; however, initiating treatment once disease has significantly progressed has failed to effectively stop or treat disease. Whether BACE inhibition may have efficacy when administered prophylactically in the early stages of AD has been under-investigated. The present studies aimed to evaluate prophylactic treatment of the BACE inhibitor verubecestat in an AD mouse model using the National Institute on Aging (NIA) resources of the Model Organism Development for Late-Onset Alzheimer's Disease (MODEL-AD) Preclinical Testing Core (PTC) Drug Screening Pipeline. Methods: 5XFAD mice were administered verubecestat ad libitum in chow from 3 to 6 months of age, prior to the onset of significant disease pathology. Following treatment (6 months of age), in vivo imaging was conducted with 18F-florbetapir (AV-45/Amyvid) (18F-AV45) and 18-FDG (fluorodeoxyglucose)-PET (positron emission tomography)/MRI (magnetic resonance imaging), brain and plasma amyloid beta (Aβ) were measured, and the clinical and behavioral characteristics of the mice were assessed and correlated with the pharmacokinetic data. Results: Prophylactic verubecestat treatment resulted in dose- and region-dependent attenuations of 18F-AV45 uptake in male and female 5XFAD mice. Plasma Aβ40 and Aβ42 were also dose-dependently attenuated with treatment. Across the dose range evaluated, side effects including coat color changes and motor alterations were reported, in the absence of cognitive improvement or changes in 18F-FDG uptake. Discussion: Prophylactic treatment with verubecestat resulted in attenuated amyloid plaque deposition when treatment was initiated prior to significant pathology in 5XFAD mice. At the same dose range effective at attenuating Aβ levels, verubecestat produced side effects in the absence of improvements in cognitive function. Taken together these data demonstrate the rigorous translational approaches of the MODEL-AD PTC for interrogating potential therapeutics and provide insight into the limitations of verubecestat as a prophylactic intervention for early-stage AD.Item Synthesis and in vitro biological evaluation of new P2X7R radioligands [11C]halo-GSK1482160 analogs(Elsevier, 2019-06) Gao, Mingzhang; Wang, Min; Meyer, Jill A.; Territo, Paul R.; Hutchins, Gary D.; Zarrinmayeh, Hamideh; Zheng, Qi-Huang; Radiology and Imaging Sciences, School of MedicineThe reference standards halo-GSK1482160 (F-, Br-, and I-) and their corresponding precursors desmethyl-halo-GSK1482160 (F-, Br-, and I-) were synthesized from (S)-1-methyl-5-oxopyrrolidine-2-carboxylic acid or (S)-5-oxopyrrolidine-2-carboxylic acid and 2-halo-3-(trifluoromethyl)benzylamine (F-, Br-, and I-) in one step with 45–93% yields. The target tracers [11C]halo-GSK1482160 (F-, Br-, and I-) were prepared from desmethyl-halo-GSK1482160 (F-, Br-, and I-) with [11C]CH3OTf under basic conditions (NaOH-Na2CO3, solid, w/w 1:2) through N-[11C]methylation and isolated by HPLC combined with SPE in 40–50% decay corrected radiochemical yield. The radiochemical purity was >99%, and the molar activity (AM) at end of bombardment (EOB) was 370–740 GBq/μmol. The potency of halo-GSK1482160 (F-, Br-, and I-) in comparison with GSK1482160 (Cl-) was determined by a radioligand competitive binding assay using [11C]GSK1482160, and the binding affinity Ki values for halo-GSK1482160 (F-, Br-, and I-) and GSK1482160 (Cl-) are 54.2, 2.5, 1.9 and 3.1 nM, respectively.Item Synthesis and initial in vitro characterization of a new P2X7R radioligand [18F]IUR-1602(Elsevier, 2019-02) Gao, Mingzhang; Wang, Min; Glick-Wilson, Barbara E.; Meyer, Jill A.; Peters, Jonathan S.; Territo, Paul R.; Green, Mark A.; Hutchins, Gary D.; Zarrinmayeh, Hamideh; Zheng, Qi-Huang; Radiology and Imaging Sciences, School of MedicineThe overexpression of P2X7R is associated with neuroinflammation and plays an important role in various neurodegenerative diseases. The [18F]fluoropropyl derivative of GSK1482160, [18F]IUR-1602, has been first prepared and examined as a new potential P2X7R radioligand. The reference standard IUR-1602 was synthesized from tert-butyl (S)-5-oxopyrrolidine-2-carboxylate, fluoropropylbromide, and 2-chloro-3-(trifluoromethyl)benzylamine with overall chemical yield 13% in three steps. The target tracer [18F]IUR-1602 was synthesized from desmethyl-GSK1482160 with 3-[18F]fluoropropyl tosylate, prepared from propane-1,3-diyl bis(4-methylbenzenesulfonate) and K[18F]F/Kryptofix2.2.2, in two steps and isolated by HPLC combined with SPE in 2–7% decay corrected radiochemical yield. The radiochemical purity was >99%, and the molar activity at end of bombardment (EOB) was 74–370 GBq/μmol. The potency of IUR-1602 in comparison with GSK1482160 was determined by a radioligand competitive binding assay using [11C]GSK1482160, and the binding affinity Ki values for IUR-1602 and GSK1482160 are 23.6 and 3.07 nM, respectively. The initial in vitro evaluation results, 8-fold less potency of [18F]IUR-1602 compared to [11C]GSK1482160, prevent further in vivo evaluation of [18F]IUR-1602 in animals and human.Item Synthesis and preliminary biological evaluation of [11C]methyl (2-amino-5-(benzylthio)thiazolo[4,5-d]pyrimidin-7-yl)-d-leucinate for the fractalkine receptor (CX3CR1)(Elsevier, 2017-06) Gao, Mingzhang; Wang, Min; Meyer, Jill A.; Peters, Jonathan S.; Zarrinmayeh, Hamideh; Territo, Paul R.; Hutchins, Gary D.; Zheng, Qi-Huang; Radiology and Imaging Sciences, School of MedicineThe reference standard methyl (2-amino-5-(benzylthio)thiazolo[4,5-d]pyrimidin-7-yl)-d-leucinate (5) and its precursor 2-amino-5-(benzylthio)thiazolo[4,5-d]pyrimidin-7-yl)-d-leucine (6) were synthesized from 6-amino-2-mercaptopyrimidin-4-ol and BnBr with overall chemical yield 7% in five steps and 4% in six steps, respectively. The target tracer [11C]methyl (2-amino-5-(benzylthio)thiazolo[4,5-d]pyrimidin-7-yl)-d-leucinate ([11C]5) was prepared from the acid precursor with [11C]CH3OTf through O-[11C]methylation and isolated by HPLC combined with SPE in 40–50% radiochemical yield, based on [11C]CO2 and decay corrected to end of bombardment (EOB). The radiochemical purity was >99%, and the specific activity (SA) at EOB was 370–1110 GBq/μmol with a total synthesis time of ∼40-min from EOB. The radioligand depletion experiment of [11C]5 did not display specific binding to CX3CR1, and the competitive binding assay of ligand 5 found much lower CX3CR1 binding affinity.Item Synthesis and preliminary biological evaluation of a novel P2X7R radioligand [18F]IUR-1601(Elsevier, 2018-05) Gao, Mingzhang; Wang, Min; Glick-Wilson, Barbara E.; Meyer, Jill A.; Peters, Jonathan S.; Territo, Paul R.; Green, Mark A.; Hutchins, Gary D.; Zarrinmayeh, Hamideh; Zheng, Qi-Huang; Radiology and Imaging Sciences, School of MedicineThe reference standard IUR-1601 ((S)-N-(2-chloro-3-(trifluoromethyl)benzyl)-1-(2-fluoroethyl)-5-oxopyrrolidine-2-carboxamide) was synthesized from tert-butyl (S)-5-oxopyrrolidine-2-carboxylate, fluoroethylbromide, and 2-chloro-3-(trifluoromethyl)benzylamine with overall chemical yield 12% in three steps. The target tracer [18F]IUR-1601 ((S)-N-(2-chloro-3-(trifluoromethyl)benzyl)-1-(2-[18F]fluoroethyl)-5-oxopyrrolidine-2-carboxamide) was synthesized from desmethyl-GSK1482160 with 2-[18F]fluoroethyl tosylate, prepared from 1,2-ethylene glycol-bis-tosylate and K[18F]F/Kryptofix2.2.2, in two steps and isolated by HPLC combined with SPE in 1–3% decay corrected radiochemical yield. The radiochemical purity was >99%, and the molar activity at end of bombardment (EOB) was 74–370 GBq/μmol. The potency of IUR-1601 in comparison with GSK1482160 was determined by a radioligand competitive binding assay using [11C]GSK1482160, and the binding affinity Ki values for IUR-1601 and GSK1482160 are 4.31 and 5.14 nM, respectively.Item Synthesis and preliminary biological evaluation of radiolabeled 5-BDBD analogs as new candidate PET radioligands for P2X4 receptor(Elsevier, 2017-07) Wang, Min; Gao, Mingzhang; Meyer, Jill A.; Peters, Jonathan S.; Zarrinmayeh, Hamideh; Territo, Paul R.; Hutchins, Gary D.; Zheng, Qi-Huang; Department of Radiology and Imaging Sciences, IU School of MedicineP2X4 receptor has become an interesting molecular target for treatment and PET imaging of neuroinflammation and associated brain diseases such as Alzheimer’s disease. This study reports the first design, synthesis, radiolabeling and biological evaluation of new candidate PET P2X4 receptor radioligands using 5-BDBD, a specific P2X4 receptor antagonist, as a scaffold. 5-(3-Hydroxyphenyl)-1-[11C]methyl-1,3-dihydro-2H-benzofuro[3,2-e][1,4]diazepin-2-one (N-[11C]Me-5-BDBD analog, [11C]9) and 5-(3-Bromophenyl)-1-[11C]methyl-1,3-dihydro-2H-benzofuro[3,2-e][1,4]diazepin-2-one (N-[11C]Me-5-BDBD, [11C]8c) were prepared from their corresponding desmethylated precursors with [11C]CH3OTf through N-[11C]methylation and isolated by HPLC combined with SPE in 30–50% decay corrected radiochemical yields with 370–1110 GBq/µmol specific activity at EOB. 5-(3-[18F]Fluorophenyl)-1,3-dihydro-2H-benzofuro[3,2-e][1,4]diazepin-2-one ([18F]F-5-BDBD, [18F]5a) and 5-(3-(2-[18F]fluoroethoxy)phenyl)-1,3-dihydro-2H-benzofuro[3,2-e][1,4]diazepin-2-one ([18F]FE-5-BDBD, [18F]11) were prepared from their corresponding nitro- and tosylated precursors by nucleophilic substitution with K[18F]F/Kryptofix 2.2.2 and isolated by HPLC-SPE in 5–25% decay corrected radiochemical yields with 111–740 GBq/µmol specific activity at EOB. The preliminary biological evaluation of radiolabeled 5-BDBD analogs indicated these new radioligands have similar biological activity with their parent compound 5-BDBD.