ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Meng, Xianglian"

Now showing 1 - 6 of 6
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Genome-wide association and interaction studies of CSF T-tau/Aβ42 ratio in ADNI cohort
    (Elsevier, 2017) Li, Jin; Zhang, Qiushi; Chen, Feng; Meng, Xianglian; Liu, Wenjie; Chen, Dandan; Yan, Jingwen; Kim, Sungeun; Wang, Lei; Feng, Weixing; Saykin, Andrew J.; Liang, Hong; Shen, Li; Department of Radiology and Imaging Sciences, IU School of Medicine
    The pathogenic relevance in Alzheimer’s disease (AD) presents a decrease of cerebrospinal fluid (CSF) amyloid-ß42 (Aß42) burden and an increase in CSF total-tau (T-tau) levels. In this work, we performed genome-wide association study (GWAS) and genome-wide interaction study (GWIS) of T-tau/Aß42 ratio as an AD imaging quantitative trait (QT) on 843 subjects and 563,980 single nucleotide polymorphisms (SNPs) in ADNI cohort. We aim to identify not only SNPs with significant main effects but also SNPs with interaction effects to help explain “missing heritability”. Linear regression method was used to detect SNP-SNP interactions among SNPs with uncorrected p-value≤0.01 from the GWAS. Age, gender and diagnosis were considered as covariates in both studies. The GWAS results replicated the previously reported AD-related genes APOE, APOC1 and TOMM40, as well as identified 14 novel genes, which showed genome-wide statistical significance. GWIS revealed 7 pairs of SNPs meeting the cell-size criteria and with bonferroni-corrected p-value≤0.05. As we expect, these interaction pairs all had marginal main effects but explained a relatively high-level variance of T-tau/Aß42, demonstrating their potential association with AD pathology.
  • Loading...
    Thumbnail Image
    Item
    Genome-wide Network-assisted Association and Enrichment Study of Amyloid Imaging Phenotype in Alzheimer's Disease
    (Bentham Science, 2019) Li, Jin; Chen, Feng; Zhang, Qiushi; Meng, Xianglian; Yao, Xiaohui; Risacher, Shannon L.; Yan, Jingwen; Saykin, Andrew J.; Liang, Hong; Shen, Li; Radiology and Imaging Sciences, School of Medicine
    Background: The etiology of Alzheimer's disease remains poorly understood at the mechanistic level, and genome-wide network-based genetics have the potential to provide new insights into the disease mechanisms. Objective: The study aimed to explore the collective effects of multiple genetic association signals on an AV-45 PET measure, which is a well-known Alzheimer's disease biomarker, by employing a network assisted strategy. Methods: First, we took advantage of a dense module search algorithm to identify modules enriched by genetic association signals in a protein-protein interaction network. Next, we performed statistical evaluation to the modules identified by dense module search, including a normalization process to adjust the topological bias in the network, a replication test to ensure the modules were not found randomly , and a permutation test to evaluate unbiased associations between the modules and amyloid imaging phenotype. Finally, topological analysis, module similarity tests and functional enrichment analysis were performed for the identified modules. Results: We identified 24 consensus modules enriched by robust genetic signals in a genome-wide association analysis. The results not only validated several previously reported AD genes (APOE, APP, TOMM40, DDAH1, PARK2, ATP5C1, PVRL2, ELAVL1, ACTN1 and NRF1), but also nominated a few novel genes (ABL1, ABLIM2) that have not been studied in Alzheimer's disease but have shown associations with other neurodegenerative diseases. Conclusion: The identified genes, consensus modules and enriched pathways may provide important clues to future research on the neurobiology of Alzheimer's disease and suggest potential therapeutic targets.
  • Loading...
    Thumbnail Image
    Item
    Genome-wide network-based pathway analysis of CSF t-tau/Aβ1-42 ratio in the ADNI cohort
    (Springer Nature, 2017-05-30) Cong, Wang; Meng, Xianglian; Li, Jin; Zhang, Qiushi; Chen, Feng; Liu, Wenjie; Wang, Ying; Cheng, Sipu; Yao, Xiaohui; Yan, Jingwen; Kim, Sungeun; Saykin, Andrew J.; Liang, Hong; Shen, Li; Alzheimer’s Disease Neuroimaging Initiative; Radiology and Imaging Sciences, School of Medicine
    BACKGROUND: The cerebrospinal fluid (CSF) levels of total tau (t-tau) and Aβ1-42 are potential early diagnostic markers for probable Alzheimer's disease (AD). The influence of genetic variation on these CSF biomarkers has been investigated in candidate or genome-wide association studies (GWAS). However, the investigation of statistically modest associations in GWAS in the context of biological networks is still an under-explored topic in AD studies. The main objective of this study is to gain further biological insights via the integration of statistical gene associations in AD with physical protein interaction networks. RESULTS: The CSF and genotyping data of 843 study subjects (199 CN, 85 SMC, 239 EMCI, 207 LMCI, 113 AD) from the Alzheimer's Disease Neuroimaging Initiative (ADNI) were analyzed. PLINK was used to perform GWAS on the t-tau/Aβ1-42 ratio using quality controlled genotype data, including 563,980 single nucleotide polymorphisms (SNPs), with age, sex and diagnosis as covariates. Gene-level p-values were obtained by VEGAS2. Genes with p-value ≤ 0.05 were mapped on to a protein-protein interaction (PPI) network (9,617 nodes, 39,240 edges, from the HPRD Database). We integrated a consensus model strategy into the iPINBPA network analysis framework, and named it as CM-iPINBPA. Four consensus modules (CMs) were discovered by CM-iPINBPA, and were functionally annotated using the pathway analysis tool Enrichr. The intersection of four CMs forms a common subnetwork of 29 genes, including those related to tau phosphorylation (GSK3B, SUMO1, AKAP5, CALM1 and DLG4), amyloid beta production (CASP8, PIK3R1, PPA1, PARP1, CSNK2A1, NGFR, and RHOA), and AD (BCL3, CFLAR, SMAD1, and HIF1A). CONCLUSIONS: This study coupled a consensus module (CM) strategy with the iPINBPA network analysis framework, and applied it to the GWAS of CSF t-tau/Aβ1-42 ratio in an AD study. The genome-wide network analysis yielded 4 enriched CMs that share not only genes related to tau phosphorylation or amyloid beta production but also multiple genes enriching several KEGG pathways such as Alzheimer's disease, colorectal cancer, gliomas, renal cell carcinoma, Huntington's disease, and others. This study demonstrated that integration of gene-level associations with CMs could yield statistically significant findings to offer valuable biological insights (e.g., functional interaction among the protein products of these genes) and suggest high confidence candidates for subsequent analyses.
  • Loading...
    Thumbnail Image
    Item
    Hippocampal Subregion and Gene Detection in Alzheimer’s Disease Based on Genetic Clustering Random Forest
    (MDPI, 2021-05-01) Li, Jin; Liu, Wenjie; Cao, Luolong; Luo, Haoran; Xu, Siwen; Bao, Peihua; Meng, Xianglian; Liang, Hong; Fang, Shiaofen; Computer and Information Science, School of Science
    The distinguishable subregions that compose the hippocampus are differently involved in functions associated with Alzheimer's disease (AD). Thus, the identification of hippocampal subregions and genes that classify AD and healthy control (HC) groups with high accuracy is meaningful. In this study, by jointly analyzing the multimodal data, we propose a novel method to construct fusion features and a classification method based on the random forest for identifying the important features. Specifically, we construct the fusion features using the gene sequence and subregions correlation to reduce the diversity in same group. Moreover, samples and features are selected randomly to construct a random forest, and genetic algorithm and clustering evolutionary are used to amplify the difference in initial decision trees and evolve the trees. The features in resulting decision trees that reach the peak classification are the important "subregion gene pairs". The findings verify that our method outperforms well in classification performance and generalization. Particularly, we identified some significant subregions and genes, such as hippocampus amygdala transition area (HATA), fimbria, parasubiculum and genes included RYR3 and PRKCE. These discoveries provide some new candidate genes for AD and demonstrate the contribution of hippocampal subregions and genes to AD.
  • Loading...
    Thumbnail Image
    Item
    Integrative network analysis of rifampinregulated miRNAs and their functions in human hepatocytes
    (IOS, 2015) Li, Jin; Wang, Ying; Wang, Lei; Liang, Hong; Feng, Weixing; Meng, Xianglian; Cong, Wang; Liu, Yunlong; Department of Medical & Molecular Genetics, IU School of Medicine
    Rifampin is an important drug used in the treatment of tuberculosis, and it increases the drug metabolism in human hepatocytes. Previous studies have shown that rifampin can indirectly influence drug deposition through the regulation of molecular interactions of miRNA, PXR and other genes. The potential functions of miRNAs associated with rifampin- induced drug disposition are poorly understood. In this study, significantly differentially expressed miRNAs (SDEM) were extracted and used to predict the miRNA-regulated co-expression target genes (MCeTG). Additionally, a miRNA-regulated co-expressed protein interaction network (MCePIN) was constructed for SDEM by extending from the protein interaction network (PIN). The functioning of the miRNAs were analyzed using GO analysis and KEGG pathway enrichment analysis. A total of 20 miRNAs belonging to SDEM were identified, and 632 miRNA-regulated genes were predicted. The MCePIN was constructed by extending from PIN, and 10 miRNAs and 33 genes that are relevant to 7 functions, including response to wounding, wound healing, response to drug, defense response, inflammatory response, liver development and drug metabolism, were discerned. The results provided by this study offer valuable insights into the effect of rifampin on miRNAs, genes and protein levels.
  • Loading...
    Thumbnail Image
    Item
    Multivariate genome wide association and network analysis of subcortical imaging phenotypes in Alzheimer's disease
    (BMC, 2020-12-29) Meng, Xianglian; Li, Jin; Zhang, Qiushi; Chen, Feng; Bian, Chenyuan; Yao, Xiaohui; Xu, Zhe; Risacher, Shannon L.; Saykin, Andrew J.; Liang, Hong; Shen, Li; Radiology and Imaging Sciences, School of Medicine
    Background: Genome-wide association studies (GWAS) have identified many individual genes associated with brain imaging quantitative traits (QTs) in Alzheimer's disease (AD). However single marker level association discovery may not be able to address the underlying biological interactions with disease mechanism. Results: In this paper, we used the MGAS (Multivariate Gene-based Association test by extended Simes procedure) tool to perform multivariate GWAS on eight AD-relevant subcortical imaging measures. We conducted multiple iPINBPA (integrative Protein-Interaction-Network-Based Pathway Analysis) network analyses on MGAS findings using protein-protein interaction (PPI) data, and identified five Consensus Modules (CMs) from the PPI network. Functional annotation and network analysis were performed on the identified CMs. The MGAS yielded significant hits within APOE, TOMM40 and APOC1 genes, which were known AD risk factors, as well as a few new genes such as LAMA1, XYLB, HSD17B7P2, and NPEPL1. The identified five CMs were enriched by biological processes related to disorders such as Alzheimer's disease, Legionellosis, Pertussis, and Serotonergic synapse. Conclusions: The statistical power of coupling MGAS with iPINBPA was higher than traditional GWAS method, and yielded new findings that were missed by GWAS. This study provides novel insights into the molecular mechanism of Alzheimer's Disease and will be of value to novel gene discovery and functional genomic studies.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University