- Browse by Author
Browsing by Author "McCabe, George P."
Now showing 1 - 10 of 11
Results Per Page
Sort Options
Item Associations among osteocalcin, leptin and metabolic health in children ages 9-13 years in the United States(BioMed Central, 2017-03-07) Virecoulon Giudici, Kelly; Kindler, Joseph M.; Martin, Berdine R.; Laing, Emma M.; McCabe, George P.; McCabe, Linda D.; Hausman, Dorothy B.; Martini, Lígia Araújo; Lewis, Richard D.; Weaver, Connie M.; Peacock, Munro; Hill Gallant, Kathleen M.; Department of Medicine, IU School of MedicineBACKGROUND: This study aimed to investigate the relationships among osteocalcin, leptin and metabolic health outcomes in children ages 9-13 years. METHODS: This was a cross-sectional analysis of baseline data from 161 boys and 157 girls (ages 9-13 years) who previously participated in a double-blinded randomized placebo controlled trial of vitamin D supplementation. Relationships among fasting serum total osteocalcin (tOC), undercarboxylated osteocalcin (ucOC), leptin, and metabolic health outcomes were analyzed. RESULTS: Approximately 52% of study participants were obese based on percent body fat cutoffs (>25% for boys and >32% for girls) and about 5% had fasting serum glucose within the prediabetic range (i.e. 100 to 125 mg/dL). Serum tOC was not correlated with leptin, glucose, insulin, HOMA-IR, or HOMA-β after adjusting for percent body fat. However, serum ucOC negatively correlated with leptin (partial r = -0.16; p = 0.04) and glucose (partial r = -0.16; p = 0.04) after adjustment for percent body fat. Leptin was a positive predictor of insulin, glucose, HOMA-IR, and HOMA-β after adjusting for age, sex and percent body fat (all p < 0.001). CONCLUSIONS: These data depict an inverse relationship between leptin and various metabolic health outcomes in children. However, the notion that tOC or ucOC link fat with energy metabolism in healthy children was not supported.Item Bone Turnover is not Influenced by Serum 25-Hydroxyvitamin D in Pubertal Healthy Black and White Children(Elsevier B.V., 2012-10) Hill, Kathleen M.; Laing, Emma M.; Hausman, Dorothy B.; Acton, Anthony; Martin, Berdine R.; McCabe, George P.; Weaver, Connie M.; Lewis, Richard D.; Peacock, Munro; Department of Medicine, IU School of MedicineLow serum 25-hydroxyvitamin D [25(OH)D] is common in healthy children particularly in blacks. However, serum 25(OH)D concentrations for optimal bone turnover in children is unknown and few data exist that describe effects of increasing serum 25(OH)D on bone turnover markers during puberty. The purpose of this study was to determine the relationships between serum 25(OH)D and changes in serum 25(OH)D and bone turnover in white and black pubertal adolescents. Bone turnover markers were measured in 318 healthy boys and girls from Georgia (34°N) and Indiana (40°N) who participated in a study of oral vitamin D3 supplementation (0 to 4000 IU/d). Serum 25(OH)D, osteocalcin, bone alkaline phosphatase, and urine N-telopeptide cross-links were measured at baseline and 12 weeks. Relationships among baseline 25(OH)D and bone biomarkers, and between changes over 12 weeks were determined and tested for effects of race, sex, latitude, and baseline 25(OH)D. Median 25(OH)D was 27.6 ng/mL (n=318, range 10.1–46.0 ng/mL) at baseline and 34.5 ng/mL (n=302, range 9.7–95.1 ng/mL) at 12 weeks. Neither baseline nor change in 25(OH)D over 12 weeks were associated with bone turnover. The lack of association was not affected by race, sex, latitude, or baseline serum 25(OH)D. Serum 25(OH)D in the range of 10-46 ng/mL appears to be sufficient for normal bone turnover in healthy black and white pubertal adolescents.Item Effect of Hesperidin with and without a Calcium (Calcilock®) Supplement on Bone Health in Postmenopausal Women(2016-03) Martin, Berdine R.; McCabe, George P.; McCabe, Linda; Jackson, George S.; Horcajada, Marie Noelle; Offord-Cavin, Elizabeth; Peacock, Munro; Weaver, Connie M.; Department of Medicine, IU School of MedicineContext: Citrus fruits contain unique flavanones. One of the most abundant of the flavanones, hesperidin, has been shown to prevent bone loss in ovariectomized rats. Objective: The objective of the study was to measure the effect of hesperidin with or without calcium supplementation on bone calcium retention in postmenopausal women. Design: The study was a double-blind, placebo-controlled, randomized-order crossover design of 500 g hesperidin with or without 500 mg calcium supplement in 12 healthy postmenopausal women. Bone calcium retention was determined from urinary excretion of the rare isotope, 41Ca, from bone. Results: Calcium plus hesperidin, but not hesperidin alone, improved bone calcium retention by 5.5% (P < .04). Conclusion: Calcium supplementation (Calcilock), in combination with hesperidin, is effective at preserving bone in postmenopausal women. - See more at: http://press.endocrine.org/doi/10.1210/jc.2015-3767#sthash.ztalWWcv.dpufItem Insulin Resistance and the IGF-I-Cortical Bone Relationship in Children Ages 9-13 Years(Wiley, 2017-07) Kindler, Joseph M.; Pollock, Norman K.; Laing, Emma M.; Oshri, Assaf; Jenkins, Nathan T.; Isales, Carlos M.; Hamrick, Mark W.; Ding, Ke-Hong; Hausman, Dorothy B.; McCabe, George P.; Martin, Berdine R.; Gallant, Kathleen M. Hill; Warden, Stuart J.; Weaver, Connie M.; Peacock, Munro; Lewis, Richard D.; Department of MedicineIGF-I is a pivotal hormone in pediatric musculoskeletal development. Although recent data suggest that the role of IGF-I in total body lean mass and total body bone mass accrual may be compromised in children with insulin resistance, cortical bone geometric outcomes have not been studied in this context. Therefore, we explored the influence of insulin resistance on the relationship between IGF-I and cortical bone in children. A secondary aim was to examine the influence of insulin resistance on the lean mass-dependent relationship between IGF-I and cortical bone. Children were otherwise healthy, early adolescent black and white boys and girls (ages 9 to 13 years) and were classified as having high (n = 147) or normal (n = 168) insulin resistance based on the homeostasis model assessment of insulin resistance (HOMA-IR). Cortical bone at the tibia diaphysis (66% site) and total body fat-free soft tissue mass (FFST) were measured by peripheral quantitative computed tomography (pQCT) and dual-energy X-ray absorptiometry (DXA), respectively. IGF-I, insulin, and glucose were measured in fasting sera and HOMA-IR was calculated. Children with high HOMA-IR had greater unadjusted IGF-I (p < 0.001). HOMA-IR was a negative predictor of cortical bone mineral content, cortical bone area (Ct.Ar), and polar strength strain index (pSSI; all p ≤ 0.01) after adjusting for race, sex, age, maturation, fat mass, and FFST. IGF-I was a positive predictor of most musculoskeletal endpoints (all p < 0.05) after adjusting for race, sex, age, and maturation. However, these relationships were moderated by HOMA-IR (pInteraction < 0.05). FFST positively correlated with most cortical bone outcomes (all p < 0.05). Path analyses demonstrated a positive relationship between IGF-I and Ct.Ar via FFST in the total cohort (βIndirect Effect = 0.321, p < 0.001). However, this relationship was moderated in the children with high (βIndirect Effect = 0.200, p < 0.001) versus normal (βIndirect Effect = 0.408, p < 0.001) HOMA-IR. These data implicate insulin resistance as a potential suppressor of IGF-I-dependent cortical bone development, though prospective studies are needed.Item Nrf2 regulates mass accrual and the antioxidant endogenous response in bone differently depending on the sex and age(Plos, 2017-02-02) Pellegrini, Gretel Gisela; Cregor, Meloney; McAndrews, Kevin; Morales, Cynthya Carolina; McCabe, Linda Doyle; McCabe, George P.; Peacock, Munro; Burr, David; Weaver, Connie; Bellido, Teresita; Department of Anatomy & Cell Biology, IU School of MedicineAccumulation of reactive oxygen species (ROS) is an important pathogenic mechanism underling the loss of bone mass and strength with aging and other conditions leading to osteoporosis. The transcription factor erythroid 2-related factor2 (Nrf2) plays a central role in activating the cellular response to ROS. Here, we examined the endogenous response of bone regulated by Nrf2, and its relationship with bone mass and architecture in the male and female murine skeleton. Young (3 month-old) and old (15 month-old) Nrf2 knockout (KO) mice of either sex exhibited the expected reduction in Nrf2 mRNA expression compared to wild type (WT) littermates. Nrf2 deletion did not lead to compensatory increase in Nrf1 or Nrf3, other members of this transcription factor family; and instead, Nrf1 expression was lower in KO mice. Compared to the respective WT littermate controls, female KO mice, young and old, exhibited lower expression of both detoxifying and antioxidant enzymes; young male KO mice, displayed lower expression of detoxifying enzymes but not antioxidant enzymes; and old male KO mice showed no differences in either detoxifying or antioxidant enzymes. Moreover, old male WT mice exhibited lower Nrf2 levels, and consequently lower expression of both detoxifying and antioxidant enzymes, compared to old female WT mice. These endogenous antioxidant responses lead to delayed rate of bone acquisition in female KO mice and higher bone acquisition in male KO mice as quantified by DXA and μCT, demonstrating that Nrf2 is required for full bone accrual in the female skeleton but unnecessary and even detrimental in the male skeleton. Therefore, Nrf2 regulates the antioxidant endogenous response and bone accrual differently depending on sex and age. These findings suggest that therapeutic interventions that target Nrf2 could be developed to enhance the endogenous antioxidant response in a sex- and age-selective manner.Item Oral calcium carbonate affects calcium but not phosphorus balance in stage 3–4 chronic kidney disease(Nature Publishing Group, 2013-05) Hill, Kathleen M.; Martin, Berdine R.; Wastney, Meryl; McCabe, George P.; Moe, Sharon M.; Weaver, Connie M.; Peacock, Munro; Department of Medicine, IU School of MedicineChronic kidney disease (CKD) patients are given calcium carbonate to bind dietary phosphorus and reduce phosphorus retention, and to prevent negative calcium balance. Data are limited on calcium and phosphorus balance in CKD to support this. The aim of this study was to determine calcium and phosphorus balance and calcium kinetics with and without calcium carbonate in CKD patients. Eight stage 3/4 CKD patients, eGFR 36 mL/min, participated in two 3-week balances in a randomized placebo-controlled cross-over study of calcium carbonate (1500 mg/d calcium). Calcium and phosphorus balance were determined on a controlled diet. Oral and intravenous 45calcium with blood sampling and urine and fecal collections were used for calcium kinetics. Fasting blood and urine were collected at baseline and end of each week of each balance period for biochemical analyses. Results showed that patients were in neutral calcium and phosphorus balance while on placebo. Calcium carbonate produced positive calcium balance, did not affect phosphorus balance, and produced only a modest reduction in urine phosphorus excretion compared with placebo. Calcium kinetics demonstrated positive net bone balance but less than overall calcium balance suggesting tissue deposition. Fasting biochemistries of calcium and phosphate homeostasis were unaffected by calcium carbonate. If they can be extrapolated to effects of chronic therapy, these data caution against the use of calcium carbonate as a phosphate binder.Item Serum 25-Hydroxyvitamin D and Intact Parathyroid Hormone Influence Muscle Outcomes in Children and Adolescents(Wiley, 2018-11) Wright, Christian S.; Laing, Emma M.; Pollock, Norman K.; Hausman, Dorothy B.; Weaver, Connie M.; Martin, Berdine R.; McCabe, George P.; Peacock, Munro; Warden, Stuart J.; Gallant, Kathleen Hill; Lewis, Richard D.; Medicine, School of MedicineIncreases in 25-hydroxyvitamin D concentrations are shown to improve strength in adults; however, data in pediatric populations are scant and equivocal. In this ancillary study of a larger-scale, multi-sited, double-blind, randomized, placebo-controlled vitamin D intervention in US children and adolescents, we examined the associations between changes in vitamin D metabolites and changes in muscle mass, strength, and composition after 12 weeks of vitamin D3 supplementation. Healthy male and female, black and white children and adolescents between the ages of 9 and 13 years from two US states (Georgia 34°N and Indiana 40°N) were enrolled in the study and randomly assigned to receive an oral vitamin D3 dose of 0, 400, 1000, 2000, or 4000 IU/d for 12 weeks between the winter months of 2009 to 2011 (N = 324). Analyses of covariance, partial correlations, and regression analyses of baseline and 12-week changes (post-baseline) in vitamin D metabolites (serum 25(OH)D, 1,25(OH)2 D, intact parathyroid hormone [iPTH]), and outcomes of muscle mass, strength, and composition (total body fat-free soft tissue [FFST], handgrip strength, forearm and calf muscle cross-sectional area [MCSA], muscle density, and intermuscular adipose tissue [IMAT]) were assessed. Serum 25(OH)D and 1,25(OH)2 D, but not iPTH, increased over time, as did fat mass, FFST, forearm and calf MCSA, forearm IMAT, and handgrip strength (p < 0.05). Vitamin D metabolites were not associated with muscle strength at baseline nor after the 12-week intervention. Changes in serum 25(OH)D correlated with decreases in forearm IMAT, whereas changes in serum iPTH predicted increases in forearm and calf MCSA and IMAT (p < 0.05). Overall, increases in 25(OH)D did not influence muscle mass or strength in vitamin D-sufficient children and adolescents; however, the role of iPTH on muscle composition in this population is unknown and warrants further investigation.Item Soluble corn fiber increases bone calcium retention in postmenopausal women in a dose-dependent manner: a randomized crossover trial(2016) Jakeman, Steven A.; Henry, Courtney N.; Martin, Berdine R.; McCabe, George P.; McCabe, Linda D.; Jackson, George S.; Peacock, Munro; Weaver, Connie M.; Department of Medicine, IU School of MedicineBackground: Dietary soluble corn fiber (SCF) significantly improves calcium absorption in adolescents and the bone strength and architecture in rodent models. Objective: In this study, we aimed to determine the skeletal benefits of SCF in postmenopausal women. Design: We used our novel technology of determining bone calcium retention by following the urinary appearance of 41Ca, a rare long-lived radioisotope, from prelabeled bone to rapidly and sensitively evaluate the effectiveness of SCF in reducing bone loss. A randomized-order, crossover, double-blinded trial was performed in 14 healthy postmenopausal women to compare doses of 0, 10, and 20 g fiber from SCF/d for 50 d. Results: A dose-response effect was shown with 10 and 20 g fiber from SCF/d, whereby bone calcium retention was improved by 4.8% (P < 0.05) and 7% (P < 0.04), respectively. The bone turnover biomarkers N-terminal telopeptide and osteocalcin were not changed by the interventions; however, a significant increase in bone-specific alkaline phosphatase, which is a bone-formation marker, was detected between 0 and 20 g fiber from SCF/d (8%; P = 0.035). Conclusion: Daily SCF consumption significantly increased bone calcium retention in postmenopausal women, which improved the bone calcium balance by an estimated 50 mg/d. This study was registered at clinicaltrials.gov as NCT02416947.Item Spot Urine Samples to Estimate Na and K Intake in Patients With Chronic Kidney Disease and Healthy Adults: A Secondary Analysis From a Controlled Feeding Study(Elsevier, 2021) Lobene, Andrea J.; Stremke, Elizabeth R.; McCabe, George P.; Moe, Sharon M.; Moorthi, Ranjani N.; Hill Gallant, Kathleen M.; Medicine, School of MedicineObjective: The objective of this study was to assess the agreement between estimated 24-hour urinary sodium excretion (e24hUNa) and estimated 24-hour urinary potassium excretion (e24hUK), calculated from a spot urine sample using several available equations and actual sodium and potassium intake from a controlled diet in both healthy participants and those with chronic kidney disease (CKD). Design and methods: This study is a secondary analysis of a controlled feeding study in CKD patients matched to healthy controls. Participants (n = 16) consumed the controlled diet, which provided ∼2400 mg Na/day and ∼3000 mg K/day, for 8 days. On days 7 and 8, participants consumed all meals and collected all urine in an inpatient research setting, and they were discharged on day 9. The day 7 morning spot urine sample was used to calculate e24hUNa and e24hUK, which was compared with known sodium and potassium intake, respectively. Results: Average e24hUNa from the INTERSALT and Tanaka-Na equations were higher than actual sodium intake by 373 mg and 559 mg, respectively, though the differences were not significant. e24hUNa from the Nerbass-SALTED equation in CKD participants was significantly higher than actual sodium intake by ∼2000 mg (P < .001), though e24hUNa from the Nerbass-RRID equation was not different from intake. e24hUK from the Tanaka-K equation was significantly lower than actual potassium intake (P < .001). For both e24hUNa and e24hUK for all participants, agreement with actual intake was poor, and e24hUNa and e24hUK were not correlated with actual sodium or potassium intake, respectively. Conclusion: e24hUNa and e24hUK are poor indicators of true sodium and potassium intake, respectively, in both healthy and CKD participants. Findings should be confirmed in larger sample sizes with varying levels of dietary sodium and potassium.Item Twenty-Four-Hour Urine Phosphorus as a Biomarker of Dietary Phosphorus Intake and Absorption in CKD: A Secondary Analysis from a Controlled Diet Balance Study(American Society of Nephrology, 2018-07-06) Stremke, Elizabeth R.; McCabe, Linda D.; McCabe, George P.; Martin, Berdine R.; Moe, Sharon M.; Weaver, Connie M.; Peacock, Munro; Hill Gallant, Kathleen M.; Department of Medicine, IU School of MedicineBACKGROUND AND OBJECTIVES: Twenty-four-hour urine phosphorus is commonly used as a surrogate measure for phosphorus intake and absorption in research studies, but its reliability and accuracy are unproven in health or CKD. This secondary analysis sought to determine the reliability and accuracy of 24-hour urine phosphorus as a biomarker of phosphorus intake and absorption in moderate CKD. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS: Eight patients with stage 3-4 CKD participated in 2-week balance studies with tightly controlled phosphorus and calcium intakes. Thirteen 24-hour urine collections per patient were analyzed for variability and reliability of 24-hour urine phosphorus and phosphorus-to-creatinine ratio. The accuracy of 24-hour urine phosphorus to predict phosphorus intake was determined using a published equation. The relationships of 24-hour urine phosphorus with phosphorus intake, net absorption, and retention were determined. RESULTS: There was wide day-to-day variation in 24-hour urine phosphorus within and among subjects (coefficient of variation of 30% and 37%, respectively). Two 24-hour urine measures were needed to achieve ≥75% reliability. Estimating dietary phosphorus intake from a single 24-hour urine resulted in underestimation up to 98% in some patients and overestimation up to 79% in others. Twenty-four-hour urine phosphorus negatively correlated with whole-body retention but was not related to net absorption. CONCLUSIONS: From a sample of eight patients with moderate CKD on a tightly controlled dietary intake, 24-hour urine phosphorus was highly variable and did not relate to dietary phosphorus intake or absorption, rather it inversely related to phosphorus retention.