- Browse by Author
Browsing by Author "Mason, Taylor"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item A machine learning model for orthodontic extraction/non-extraction decision in a racially and ethnically diverse patient population(Elsevier, 2023-09) Mason, Taylor; Kelly, Kynnedy M.; Eckert, George; Dean, Jeffrey A.; Dundar, M. Murat; Turkkahraman, Hakan; Orthodontics and Oral Facial Genetics, School of DentistryIntroduction The purpose of the present study was to create a machine learning (ML) algorithm with the ability to predict the extraction/non-extraction decision in a racially and ethnically diverse sample. Methods Data was gathered from the records of 393 patients (200 non-extraction and 193 extraction) from a racially and ethnically diverse population. Four ML models (logistic regression [LR], random forest [RF], support vector machine [SVM], and neural network [NN]) were trained on a training set (70% of samples) and then tested on the remaining samples (30%). The accuracy and precision of the ML model predictions were calculated using the area under the curve (AUC) of the receiver operating characteristics (ROC) curve. The proportion of correct extraction/non-extraction decisions was also calculated. Results The LR, SVM, and NN models performed best, with an AUC of the ROC of 91.0%, 92.5%, and 92.3%, respectively. The overall proportion of correct decisions was 82%, 76%, 83%, and 81% for the LR, RF, SVM, and NN models, respectively. The features found to be most helpful to the ML algorithms in making their decisions were maxillary crowding/spacing, L1-NB (mm), U1-NA (mm), PFH:AFH, and SN-MP(̊), although many other features contributed significantly. Conclusions ML models can predict the extraction decision in a racially and ethnically diverse patient population with a high degree of accuracy and precision. Crowding, sagittal, and vertical characteristics all featured prominently in the hierarchy of components most influential to the ML decision-making process.Item A Novel Machine Learning Model for Predicting Orthodontic Treatment Duration(MDPI, 2023-08-23) Volovic, James; Badirl, Sarkhan; Ahmad, Sunna; Leavit, Landon; Mason, Taylor; Bhamidipalli, Surya Sruthi; Eckert, George; Albright, David; Turkkahraman, Hakan; Orthodontics and Oral Facial Genetics, School of DentistryIn the field of orthodontics, providing patients with accurate treatment time estimates is of utmost importance. As orthodontic practices continue to evolve and embrace new advancements, incorporating machine learning (ML) methods becomes increasingly valuable in improving orthodontic diagnosis and treatment planning. This study aimed to develop a novel ML model capable of predicting the orthodontic treatment duration based on essential pre-treatment variables. Patients who completed comprehensive orthodontic treatment at the Indiana University School of Dentistry were included in this retrospective study. Fifty-seven pre-treatment variables were collected and used to train and test nine different ML models. The performance of each model was assessed using descriptive statistics, intraclass correlation coefficients, and one-way analysis of variance tests. Random Forest, Lasso, and Elastic Net were found to be the most accurate, with a mean absolute error of 7.27 months in predicting treatment duration. Extraction decision, COVID, intermaxillary relationship, lower incisor position, and additional appliances were identified as important predictors of treatment duration. Overall, this study demonstrates the potential of ML in predicting orthodontic treatment duration using pre-treatment variables.Item Can we predict orthodontic extraction patterns by using machine learning?(Wiley, 2023) Leavitt, Landon; Volovic, James; Steinhauer, Lily; Mason, Taylor; Eckert, George; Dean, Jeffrey A.; Dundar, M. Murat; Turkkahraman, Hakan; Orthodontics and Oral Facial Genetics, School of DentistryObjective To investigate the utility of machine learning (ML) in accurately predicting orthodontic extraction patterns in a heterogeneous population. Materials and Methods The material of this retrospective study consisted of records of 366 patients treated with orthodontic extractions. The dataset was randomly split into training (70%) and test sets (30%) and was stratified according to race/ethnicity and gender. Fifty-five cephalometric and demographic input data were used to train and test multiple ML algorithms. The extraction patterns were labelled according to the previous treatment plan. Random Forest (RF), Logistic Regression (LR), and Support Vector Machine (SVM) algorithms were used to predict the patient's extraction patterns. Results The highest class accuracy percentages were obtained for the upper and lower 1st premolars (U/L4s) (RF: 81.63%, LR: 63.27%, SVM: 63.27%) and upper 1st premolars only (U4s) extraction patterns (RF: 61.11%, LR: 72.22%, SVM: 72.22%). However, all methods revealed low class accuracy rates (<50%) for the upper 1st and lower 2nd premolars (U4/L5s), upper 2nd and lower 1st premolars (U5/L4s), and upper and lower 2nd premolars (U/L5s) extraction patterns. For the overall accuracy, RF yielded the highest percentage with 54.55%, followed by SVM with 52.73% and LR with 49.09%. Conclusion All tested supervised ML techniques yielded good accuracy in predicting U/L4s and U4s extraction patterns. However, they predicted poorly for the U4/L5s, U5/L4s, and U/L5s extraction patterns. Molar relationship, mandibular crowding, and overjet were found to be the most predictive indicators for determining extraction patterns.