- Browse by Author
Browsing by Author "Mason, Emily R."
Now showing 1 - 7 of 7
Results Per Page
Sort Options
Item AD Informer Set: Chemical tools to facilitate Alzheimer's disease drug discovery(Wiley, 2022-04-20) Potjewyd, Frances M.; Annor-Gyamfi, Joel K.; Aubé, Jeffrey; Chu, Shaoyou; Conlon, Ivie L.; Frankowski, Kevin J.; Guduru, Shiva K.R.; Hardy, Brian P.; Hopkins, Megan D.; Kinoshita, Chizuru; Kireev, Dmitri B.; Mason, Emily R.; Moerk, Charles T.; Nwogbo, Felix; Pearce, Kenneth H.; Richardson, Timothy I.; Rogers, David A.; Soni, Disha M.; Stashko, Michael; Wang, Xiaodong; Wells, Carrow; Willson, Timothy M.; Frye, Stephen V.; Young, Jessica E.; Axtman, Alison D.; Medicine, School of MedicineIntroduction: The portfolio of novel targets to treat Alzheimer's disease (AD) has been enriched by the Accelerating Medicines Partnership Program for Alzheimer's Disease (AMP AD) program. Methods: Publicly available resources, such as literature and databases, enabled a data-driven effort to identify existing small molecule modulators for many protein products expressed by the genes nominated by AMP AD and suitable positive control compounds to be included in the set. Compounds contained within the set were manually selected and annotated with associated published, predicted, and/or experimental data. Results: We built an annotated set of 171 small molecule modulators targeting 98 unique proteins that have been nominated by AMP AD consortium members as novel targets for the treatment of AD. The majority of compounds included in the set are inhibitors. These small molecules vary in their quality and should be considered chemical tools that can be used in efforts to validate therapeutic hypotheses, but which will require further optimization. A physical copy of the AD Informer Set can be requested on the Target Enablement to Accelerate Therapy Development for Alzheimer's Disease (TREAT-AD) website. Discussion: Small molecules that enable target validation are important tools for the translation of novel hypotheses into viable therapeutic strategies for AD.Item Differential Inhibition of Human Nav1.2 Resurgent and Persistent Sodium Currents by Cannabidiol and GS967(MDPI, 2020-04) Mason, Emily R.; Cummins, Theodore R.; Pharmacology and Toxicology, School of MedicineMany epilepsy patients are refractory to conventional antiepileptic drugs. Resurgent and persistent currents can be enhanced by epilepsy mutations in the Nav1.2 channel, but conventional antiepileptic drugs inhibit normal transient currents through these channels, along with aberrant resurgent and persistent currents that are enhanced by Nav1.2 epilepsy mutations. Pharmacotherapies that specifically target aberrant resurgent and/or persistent currents would likely have fewer unwanted side effects and be effective in many patients with refractory epilepsy. This study investigated the effects of cannbidiol (CBD) and GS967 (each at 1 μM) on transient, resurgent, and persistent currents in human embryonic kidney (HEK) cells stably expressing wild-type hNav1.2 channels. We found that CBD preferentially inhibits resurgent currents over transient currents in this paradigm; and that GS967 preferentially inhibits persistent currents over transient currents. Therefore, CBD and GS967 may represent a new class of more targeted and effective antiepileptic drugs.Item Epilepsy Mutations in Different Regions of the Nav1.2 Channel Cause Distinct Biophysical Effects(2020-06) Mason, Emily R.; Cummins, Theodore; Sullivan, William J., Jr.; Brustovetsky, Nickolay; Sheets, Patrick; Hashino, EriWhile most cases of epilepsy respond well to common antiepileptic drugs, many genetically-driven epilepsies are refractory to conventional antiepileptic drugs. Over 250 mutations in the Nav1.2 gene (SCN2A) have been implicated in otherwise idiopathic cases of epilepsy, many of which are refractory to traditional antiepileptic drugs. Few of these mutations have been studied in vitro to determine their biophysical effects on the channels, which could reveal why the effects of some are refractory to traditional antiepileptic drugs. The goal of this dissertation was to characterize multiple epilepsy mutations in the SCN2A gene, which I hypothesized would have distinct biophysical effects on the channel’s function. I used patch-clamp electrophysiology to determine the biophysical effects of three SCN2A epilepsy mutations (R1882Q, R853Q, and L835F). Wild-type (WT) or mutant human SCN2A cDNAs were expressed in human embryonic kidney (HEK) cells and subjected to a panel of electrophysiological assays. I predicted that the net effect of each of these mutations was enhancement of channel function; my results regarding the L835F and R1882Q mutations supported this hypothesis. Both mutations enhance persistent current, and R1882Q also impairs fast inactivation. However, examination of the same parameters for the R853Q mutation suggested a decrease of channel function. I hypothesized that the R853Q mutation creates a gating pore in the channel structure through which sodium leaks into the cell when the channel is in its resting conformation. This hypothesis was supported by electrophysiological data from Xenopus oocytes, which showed a significant voltage-dependent leak current at negative potentials when they expressed the R853Q mutant channels. This was absent in oocytes expressing WT channels. Overall, these results suggest that individual mutations in the SCN2A gene generate epilepsy via distinct biophysical effects that may require novel and/or tailored pharmacotherapies for effective management.Item Microglial Phagocytosis/Cell Health High-Content Assay(Wiley, 2023) Mason, Emily R.; Soni, Disha M.; Chu, Shaoyou; Medicine, School of MedicineWe report a microglial phagocytosis/cell health high-content assay that has been used to test small molecule chemical probes and support our drug discovery projects targeting microglia for Alzheimer's disease therapy. The assay measures phagocytosis and cell health (cell count and nuclear intensity) simultaneously in 384-well plates processed with an automatic liquid handler. The mix-and-read live cell imaging assay is highly reproducible with capacity to meet drug discovery research needs. Assay procedures take 4 days including plating cells, treating cells, adding pHrodo-myelin/membrane debris to cells for phagocytosis, staining cell nuclei before performing high-content imaging, and analysis. Three selected parameters are measured from cells: 1) mean total fluorescence intensity per cell of pHrodo-myelin/membrane debris in phagocytosis vesicles to quantify phagocytosis; 2) cell counts per well (measuring compound effects on proliferation and cell death); and 3) average nuclear intensity (measuring compound induced apoptosis). The assay has been used on HMC3 cells (an immortalized human microglial cell line), BV2 cells (an immortalized mouse microglial cell line), and primary microglia isolated from mouse brains. Simultaneous measurements of phagocytosis and cell health allow for the distinction of compound effects on regulation of phagocytosis from cellular stress/toxicity related changes, a distinguishing feature of the assay. The combination of cell counts and nuclear intensity as indicators of cell health is also an effective way to measure cell stress and compound cytotoxicity, which may have broad applications as simultaneous profiling measurements for other phenotypic assays.Item Resurgent and Gating Pore Currents Induced by De Novo SCN2A Epilepsy Mutations(Society for Neuroscience, 2019-10-16) Mason, Emily R.; Wu, Fenfen; Patel, Reesha R.; Xiao, Yucheng; Cannon, Stephen C.; Cummins, Theodore R.; Pharmacology and Toxicology, School of MedicineOver 150 mutations in the SCN2A gene, which encodes the neuronal Nav1.2 protein, have been implicated in human epilepsy cases. Of these, R1882Q and R853Q are two of the most commonly reported mutations. This study utilized voltage-clamp electrophysiology to characterize the biophysical effects of the R1882Q and R853Q mutations on the hNav1.2 channel, including their effects on resurgent current and gating pore current, which are not typically investigated in the study of Nav1.2 channel mutations. HEK cells transiently transfected with DNA encoding either wild-type (WT) or mutant hNav1.2 revealed that the R1882Q mutation induced a gain-of-function phenotype, including slowed fast inactivation, depolarization of the voltage dependence of inactivation, and increased persistent current. In this model system, the R853Q mutation primarily produced loss-of-function effects, including reduced transient current amplitude and density, hyperpolarization of the voltage dependence of inactivation, and decreased persistent current. The presence of a Navβ4 peptide (KKLITFILKKTREK-OH) in the pipette solution induced resurgent currents, which were increased by the R1882Q mutation and decreased by the R853Q mutation. Further study of the R853Q mutation in Xenopus oocytes indicated a reduced surface expression and revealed a robust gating pore current at negative membrane potentials, a function absent in the WT channel. This not only shows that different epileptogenic point mutations in hNav1.2 have distinct biophysical effects on the channel, but also illustrates that individual mutations can have complex consequences that are difficult to identify using conventional analyses. Distinct mutations may, therefore, require tailored pharmacotherapies in order to eliminate seizures.Item SHIP1 therapeutic target enablement: Identification and evaluation of inhibitors for the treatment of late‐onset Alzheimer's disease(Wiley, 2023) Jesudason, Cynthia D.; Mason, Emily R.; Chu, Shaoyou; Oblak, Adrian L.; Javens-Wolfe, June; Moussaif, Mustapha; Durst, Greg; Hipskind, Philip; Beck, Daniel E.; Dong, Jiajun; Amarasinghe, Ovini; Zhang, Zhong-Yin; Hamdani, Adam K.; Singhal, Kratika; Mesecar, Andrew D.; Souza, Sarah; Jacobson, Marlene; Di Salvo, Jerry; Soni, Disha M.; Kandasamy, Murugesh; Masters, Andrea R.; Quinney, Sara K.; Doolen, Suzanne; Huhe, Hasi; Sukoff Rizzo, Stacey J.; Lamb, Bruce T.; Palkowitz, Alan D.; Richardson, Timothy I.; Medicine, School of MedicineIntroduction: The risk of developing Alzheimer's disease is associated with genes involved in microglial function. Inositol polyphosphate-5-phosphatase (INPP5D), which encodes Src homology 2 (SH2) domain-containing inositol polyphosphate 5-phosphatase 1 (SHIP1), is a risk gene expressed in microglia. Because SHIP1 binds receptor immunoreceptor tyrosine-based inhibitory motifs (ITIMs), competes with kinases, and converts PI(3,4,5)P3 to PI(3,4)P2, it is a negative regulator of microglia function. Validated inhibitors are needed to evaluate SHIP1 as a potential therapeutic target. Methods: We identified inhibitors and screened the enzymatic domain of SHIP1. A protein construct containing two domains was used to evaluate enzyme inhibitor potency and selectivity versus SHIP2. Inhibitors were tested against a construct containing all ordered domains of the human and mouse proteins. A cellular thermal shift assay (CETSA) provided evidence of target engagement in cells. Phospho-AKT levels provided further evidence of on-target pharmacology. A high-content imaging assay was used to study the pharmacology of SHIP1 inhibition while monitoring cell health. Physicochemical and absorption, distribution, metabolism, and excretion (ADME) properties were evaluated to select a compound suitable for in vivo studies. Results: SHIP1 inhibitors displayed a remarkable array of activities and cellular pharmacology. Inhibitory potency was dependent on the protein construct used to assess enzymatic activity. Some inhibitors failed to engage the target in cells. Inhibitors that were active in the CETSA consistently destabilized the protein and reduced pAKT levels. Many SHIP1 inhibitors were cytotoxic either at high concentration due to cell stress or they potently induced cell death depending on the compound and cell type. One compound activated microglia, inducing phagocytosis at concentrations that did not result in significant cell death. A pharmacokinetic study demonstrated brain exposures in mice upon oral administration. Discussion: 3-((2,4-Dichlorobenzyl)oxy)-5-(1-(piperidin-4-yl)-1H-pyrazol-4-yl) pyridine activated primary mouse microglia and demonstrated exposures in mouse brain upon oral dosing. Although this compound is our recommended chemical probe for investigating the pharmacology of SHIP1 inhibition at this time, further optimization is required for clinical studies. Highlights: Cellular thermal shift assay (CETSA) and signaling (pAKT) assays were developed to provide evidence of src homology 2 (SH2) domain-containing inositol phosphatase 1 (SHIP1) target engagement and on-target activity in cellular assays. A phenotypic high-content imaging assay with simultaneous measures of phagocytosis, cell number, and nuclear intensity was developed to explore cellular pharmacology and monitor cell health. SHIP1 inhibitors demonstrate a wide range of activity and cellular pharmacology, and many reported inhibitors are cytotoxic. The chemical probe 3-((2,4-dichlorobenzyl)oxy)-5-(1-(piperidin-4-yl)-1H-pyrazol-4-yl) pyridine is recommended to explore SHIP1 pharmacology.Item Use of AD Informer Set compounds to explore validity of novel targets in Alzheimer's disease pathology(Wiley, 2022-04-12) Potjewyd, Frances M.; Annor-Gyamfi, Joel K.; Aubé, Jeffrey; Chu, Shaoyou; Conlon, Ivie L.; Frankowski, Kevin J.; Guduru, Shiva K.R.; Hardy, Brian P.; Hopkins, Megan D.; Kinoshita, Chizuru; Kireev, Dmitri B.; Mason, Emily R.; Moerk, Charles T.; Nwogbo, Felix; Pearce, Kenneth H., Jr.; Richardson, Timothy I.; Rogers, David A.; Soni, Disha M.; Stashko, Michael; Wang, Xiaodong; Wells, Carrow; Willson, Timothy M.; Frye, Stephen V.; Young, Jessica E.; Axtman, Alison D.; Medicine, School of MedicineIntroduction: A chemogenomic set of small molecules with annotated activities and implicated roles in Alzheimer's disease (AD) called the AD Informer Set was recently developed and made available to the AD research community: https://treatad.org/data-tools/ad-informer-set/. Methods: Small subsets of AD Informer Set compounds were selected for AD-relevant profiling. Nine compounds targeting proteins expressed by six AD-implicated genes prioritized for study by Target Enablement to Accelerate Therapy Development for Alzheimer's Disease (TREAT-AD) teams were selected for G-protein coupled receptor (GPCR), amyloid beta (Aβ) and tau, and pharmacokinetic (PK) studies. Four non-overlapping compounds were analyzed in microglial cytotoxicity and phagocytosis assays. Results: The nine compounds targeting CAPN2, EPHX2, MDK, MerTK/FLT3, or SYK proteins were profiled in 46 to 47 primary GPCR binding assays. Human induced pluripotent stem cell (iPSC)-derived neurons were treated with the same nine compounds and secretion of Aβ peptides (Aβ40 and Aβ42) as well as levels of phosphophorylated tau (p-tau, Thr231) and total tau (t-tau) peptides measured at two concentrations and two timepoints. Finally, CD1 mice were dosed intravenously to determine preliminary PK and/or brain-specific penetrance values for these compounds. As a final cell-based study, a non-overlapping subset of four compounds was selected based on single-concentration screening for analysis of both cytotoxicity and phagocytosis in murine and human microglia cells. Discussion: We have demonstrated the utility of the AD Informer Set in the validation of novel AD hypotheses using biochemical, cellular (primary and immortalized), and in vivo studies. The selectivity for their primary targets versus essential GPCRs in the brain was established for our compounds. Statistical changes in tau, p-tau, Aβ40, and/or Aβ42 and blood-brain barrier penetrance were observed, solidifying the utility of specific compounds for AD. Single-concentration phagocytosis results were validated as predictive of dose-response findings. These studies established workflows, validated assays, and illuminated next steps for protein targets and compounds.