- Browse by Author
Browsing by Author "Masellis, Mario"
Now showing 1 - 9 of 9
Results Per Page
Sort Options
Item A trial of gantenerumab or solanezumab in dominantly inherited Alzheimer's disease(Springer Nature, 2021) Salloway, Stephen; Farlow, Martin; McDade, Eric; Clifford, David B.; Wang, Guoqiao; Llibre-Guerra, Jorge J.; Hitchcock, Janice M.; Mills, Susan L.; Santacruz, Anna M.; Aschenbrenner, Andrew J.; Hassenstab, Jason; Benzinger, Tammie L.S.; Gordon, Brian A.; Fagan, Anne M.; Coalier, Kelley A.; Cruchaga, Carlos; Goate, Alison A.; Perrin, Richard J.; Xiong, Chengjie; Li, Yan; Morris, John C.; Snider, B. Joy; Mummery, Catherine; Surti, G. Mustafa; Hannequin, Didier; Wallon, David; Berman, Sarah B.; Lah, James J.; Jimenez-Velazquez, Ivonne Z.; Roberson, Erik D.; van Dyck, Christopher H.; Honig, Lawrence S.; Sánchez-Valle, Raquel; Brooks, William S.; Gauthier, Serge; Galasko, Douglas R.; Masters, Colin L.; Brosch, Jared R.; Hsiung, Ging-Yuek Robin; Jayadev, Suman; Formaglio, Maité; Masellis, Mario; Clarnette, Roger; Pariente, Jérémie; Dubois, Bruno; Pasquier, Florence; Jack, Clifford R., Jr.; Koeppe, Robert; Snyder, Peter J.; Aisen, Paul S.; Thomas, Ronald G.; Berry, Scott M.; Wendelberger, Barbara A.; Andersen, Scott W.; Holdridge, Karen C.; Mintun, Mark A.; Yaari, Roy; Sims, John R.; Baudler, Monika; Delmar, Paul; Doody, Rachelle S.; Fontoura, Paulo; Giacobino, Caroline; Kerchner, Geoffrey A.; Bateman, Randall J.; Dominantly Inherited Alzheimer Network–Trials Unit; Neurology, School of MedicineDominantly inherited Alzheimer's disease (DIAD) causes predictable biological changes decades before the onset of clinical symptoms, enabling testing of interventions in the asymptomatic and symptomatic stages to delay or slow disease progression. We conducted a randomized, placebo-controlled, multi-arm trial of gantenerumab or solanezumab in participants with DIAD across asymptomatic and symptomatic disease stages. Mutation carriers were assigned 3:1 to either drug or placebo and received treatment for 4-7 years. The primary outcome was a cognitive end point; secondary outcomes included clinical, cognitive, imaging and fluid biomarker measures. Fifty-two participants carrying a mutation were assigned to receive gantenerumab, 52 solanezumab and 40 placebo. Both drugs engaged their Aβ targets but neither demonstrated a beneficial effect on cognitive measures compared to controls. The solanezumab-treated group showed a greater cognitive decline on some measures and did not show benefits on downstream biomarkers. Gantenerumab significantly reduced amyloid plaques, cerebrospinal fluid total tau, and phospho-tau181 and attenuated increases of neurofilament light chain. Amyloid-related imaging abnormalities edema was observed in 19.2% (3 out of 11 were mildly symptomatic) of the gantenerumab group, 2.5% of the placebo group and 0% of the solanezumab group. Gantenerumab and solanezumab did not slow cognitive decline in symptomatic DIAD. The asymptomatic groups showed no cognitive decline; symptomatic participants had declined before reaching the target doses.Item Amyloid-Related Imaging Abnormalities in the DIAN-TU-001 Trial of Gantenerumab and Solanezumab: Lessons from a Trial in Dominantly Inherited Alzheimer Disease(Wiley, 2022) Joseph-Mathurin, Nelly; Llibre-Guerra, Jorge J.; Li, Yan; McCullough, Austin A.; Hofmann, Carsten; Wojtowicz, Jakub; Park, Ethan; Wang, Guoqiao; Preboske, Gregory M.; Wang, Qing; Gordon, Brian A.; Chen, Charles D.; Flores, Shaney; Aggarwal, Neelum T.; Berman, Sarah B.; Bird, Thomas D.; Black, Sandra E.; Borowski, Bret; Brooks, William S.; Chhatwal, Jasmeer P.; Clarnette, Roger; Cruchaga, Carlos; Fagan, Anne M.; Farlow, Martin; Fox, Nick C.; Gauthier, Serge; Hassenstab, Jason; Hobbs, Diana A.; Holdridge, Karen C.; Honig, Lawrence S.; Hornbeck, Russ C.; Hsiung, Ging-Yuek R.; Jack, Clifford R., Jr.; Jimenez-Velazquez, Ivonne Z.; Jucker, Mathias; Klein, Gregory; Levin, Johannes; Mancini, Michele; Masellis, Mario; McKay, Nicole S.; Mummery, Catherine J.; Ringman, John M.; Shimada, Hiroyuki; Snider, B. Joy; Suzuki, Kazushi; Wallon, David; Xiong, Chengjie; Yaari, Roy; McDade, Eric; Perrin, Richard J.; Bateman, Randall J.; Salloway, Stephen P.; Benzinger, Tammie L. S.; Clifford, David B.; Dominantly Inherited Alzheimer Network Trials Unit; Neurology, School of MedicineObjective: To determine the characteristics of participants with amyloid-related imaging abnormalities (ARIA) in a trial of gantenerumab or solanezumab in dominantly inherited Alzheimer disease (DIAD). Methods: 142 DIAD mutation carriers received either gantenerumab SC (n = 52), solanezumab IV (n = 50), or placebo (n = 40). Participants underwent assessments with the Clinical Dementia Rating® (CDR®), neuropsychological testing, CSF biomarkers, β-amyloid positron emission tomography (PET), and magnetic resonance imaging (MRI) to monitor ARIA. Cross-sectional and longitudinal analyses evaluated potential ARIA-related risk factors. Results: Eleven participants developed ARIA-E, including 3 with mild symptoms. No ARIA-E was reported under solanezumab while gantenerumab was associated with ARIA-E compared to placebo (odds ratio [OR] = 9.1, confidence interval [CI][1.2, 412.3]; p = 0.021). Under gantenerumab, APOE-ɛ4 carriers were more likely to develop ARIA-E (OR = 5.0, CI[1.0, 30.4]; p = 0.055), as were individuals with microhemorrhage at baseline (OR = 13.7, CI[1.2, 163.2]; p = 0.039). No ARIA-E was observed at the initial 225 mg/month gantenerumab dose, and most cases were observed at doses >675 mg. At first ARIA-E occurrence, all ARIA-E participants were amyloid-PET+, 60% were CDR >0, 60% were past their estimated year to symptom onset, and 60% had also incident ARIA-H. Most ARIA-E radiologically resolved after dose adjustment and developing ARIA-E did not significantly increase odds of trial discontinuation. ARIA-E was more frequently observed in the occipital lobe (90%). ARIA-E severity was associated with age at time of ARIA-E. Interpretation: In DIAD, solanezumab was not associated with ARIA. Gantenerumab dose over 225 mg increased ARIA-E risk, with additional risk for individuals APOE-ɛ4(+) or with microhemorrhage. ARIA-E was reversible on MRI in most cases, generally asymptomatic, without additional risk for trial discontinuation.Item Comparison of Pittsburgh compound B and florbetapir in cross-sectional and longitudinal studies(Elsevier, 2019-02-22) Su, Yi; Flores, Shaney; Wang, Guoqiao; Hornbeck, Russ C.; Speidel, Benjamin; Joseph-Mathurin, Nelly; Vlassenko, Andrei G.; Gordon, Brian A.; Koeppe, Robert A.; Klunk, William E.; Clifford, R. Jack, Jr.; Farlow, Martin R.; Salloway, Stephen; Snider, Barbara J.; Berman, Sarah B.; Roberson, Erik D.; Broschi, Jared; Jimenez-Velazques, Ivonne; van Dyck, Christopher H.; Galasko, Douglas; Yuan, Shauna H.; Jayadev, Suman; Honig, Lawrence S.; Gauthier, Serge; Hsiung, Ging-Yuek R.; Masellis, Mario; Brooks, William S.; Fulham, Michael; Clarnette, Roger; Masters, Colin L.; Wallon, David; Hannequin, Didier; Dubois, Bruno; Pariente, Jeremie; Sanchez-Valle, Raquel; Mummery, Catherine; Ringman, John M.; Bottlaender, Michel; Klein, Gregory; Milosavljevic-Ristic, Smiljana; McDade, Eric; Xiong, Chengjie; Morris, John C.; Bateman, Randall J.; Benzinger, Tammie L.S.; Neurology, School of MedicineIntroduction: Quantitative in vivo measurement of brain amyloid burden is important for both research and clinical purposes. However, the existence of multiple imaging tracers presents challenges to the interpretation of such measurements. This study presents a direct comparison of Pittsburgh compound B-based and florbetapir-based amyloid imaging in the same participants from two independent cohorts using a crossover design. Methods: Pittsburgh compound B and florbetapir amyloid PET imaging data from three different cohorts were analyzed using previously established pipelines to obtain global amyloid burden measurements. These measurements were converted to the Centiloid scale to allow fair comparison between the two tracers. The mean and inter-individual variability of the two tracers were compared using multivariate linear models both cross-sectionally and longitudinally. Results: Global amyloid burden measured using the two tracers were strongly correlated in both cohorts. However, higher variability was observed when florbetapir was used as the imaging tracer. The variability may be partially caused by white matter signal as partial volume correction reduces the variability and improves the correlations between the two tracers. Amyloid burden measured using both tracers was found to be in association with clinical and psychometric measurements. Longitudinal comparison of the two tracers was also performed in similar but separate cohorts whose baseline amyloid load was considered elevated (i.e., amyloid positive). No significant difference was detected in the average annualized rate of change measurements made with these two tracers. Discussion: Although the amyloid burden measurements were quite similar using these two tracers as expected, difference was observable even after conversion into the Centiloid scale. Further investigation is warranted to identify optimal strategies to harmonize amyloid imaging data acquired using different tracers.Item Creating the Pick's disease International Consortium: Association study of MAPT H2 haplotype with risk of Pick's disease(medRxiv, 2023-04-24) Valentino, Rebecca R.; Scotton, William J.; Roemer, Shanu F.; Lashley, Tammaryn; Heckman, Michael G.; Shoai, Maryam; Martinez-Carrasco, Alejandro; Tamvaka, Nicole; Walton, Ronald L.; Baker, Matthew C.; Macpherson, Hannah L.; Real, Raquel; Soto-Beasley, Alexandra I.; Mok, Kin; Revesz, Tamas; Warner, Thomas T.; Jaunmuktane, Zane; Boeve, Bradley F.; Christopher, Elizabeth A.; DeTure, Michael; Duara, Ranjan; Graff-Radford, Neill R.; Josephs, Keith A.; Knopman, David S.; Koga, Shunsuke; Murray, Melissa E.; Lyons, Kelly E.; Pahwa, Rajesh; Parisi, Joseph E.; Petersen, Ronald C.; Whitwell, Jennifer; Grinberg, Lea T.; Miller, Bruce; Schlereth, Athena; Seeley, William W.; Spina, Salvatore; Grossman, Murray; Irwin, David J.; Lee, Edward B.; Suh, EunRan; Trojanowski, John Q.; Van Deerlin, Vivianna M.; Wolk, David A.; Connors, Theresa R.; Dooley, Patrick M.; Frosch, Matthew P.; Oakley, Derek H.; Aldecoa, Iban; Balasa, Mircea; Gelpi, Ellen; Borrego-Écija, Sergi; de Eugenio Huélamo, Rosa Maria; Gascon-Bayarri, Jordi; Sánchez-Valle, Raquel; Sanz-Cartagena, Pilar; Piñol-Ripoll, Gerard; Molina-Porcel, Laura; Bigio, Eileen H.; Flanagan, Margaret E.; Gefen, Tamar; Rogalski, Emily J.; Weintraub, Sandra; Redding-Ochoa, Javier; Chang, Koping; Troncoso, Juan C.; Prokop, Stefan; Newell, Kathy L.; Ghetti, Bernardino; Jones, Matthew; Richardson, Anna; Robinson, Andrew C.; Roncaroli, Federico; Snowden, Julie; Allinson, Kieren; Green, Oliver; Rowe, James B.; Singh, Poonam; Beach, Thomas G.; Serrano, Geidy E.; Flowers, Xena E.; Goldman, James E.; Heaps, Allison C.; Leskinen, Sandra P.; Teich, Andrew F.; Black, Sandra E.; Keith, Julia L.; Masellis, Mario; Bodi, Istvan; King, Andrew; Sarraj, Safa-Al; Troakes, Claire; Halliday, Glenda M.; Hodges, John R.; Kril, Jillian J.; Kwok, John B.; Piguet, Olivier; Gearing, Marla; Arzberger, Thomas; Roeber, Sigrun; Attems, Johannes; Morris, Christopher M.; Thomas, Alan J.; Evers, Bret M.; White, Charles L.; Mechawar, Naguib; Sieben, Anne A.; Cras, Patrick P.; De Vil, Bart B.; De Deyn, Peter Paul P. P.; Duyckaerts, Charles; Le Ber, Isabelle; Seihean, Danielle; Turbant-Leclere, Sabrina; MacKenzie, Ian R.; McLean, Catriona; Cykowski, Matthew D.; Ervin, John F.; Wang, Shih-Hsiu J.; Graff, Caroline; Nennesmo, Inger; Nagra, Rashed M.; Riehl, James; Kovacs, Gabor G.; Giaccone, Giorgio; Nacmias, Benedetta; Neumann, Manuela; Ang, Lee-Cyn; Finger, Elizabeth C.; Blauwendraat, Cornelis; Nalls, Mike A.; Singleton, Andrew B.; Vitale, Dan; Cunha, Cristina; Carvalho, Agostinho; Wszolek, Zbigniew K.; Morris, Huw R.; Rademakers, Rosa; Hardy, John A.; Dickson, Dennis W.; Rohrer, Jonathan D.; Ross, Owen A.; Pathology and Laboratory Medicine, School of MedicineBackground: Pick's disease (PiD) is a rare and predominantly sporadic form of frontotemporal dementia that is classified as a primary tauopathy. PiD is pathologically defined by argyrophilic inclusion Pick bodies and ballooned neurons in the frontal and temporal brain lobes. PiD is characterised by the presence of Pick bodies which are formed from aggregated, hyperphosphorylated, 3-repeat tau proteins, encoded by the MAPT gene. The MAPT H2 haplotype has consistently been associated with a decreased disease risk of the 4-repeat tauopathies of progressive supranuclear palsy and corticobasal degeneration, however its role in susceptibility to PiD is unclear. The primary aim of this study was to evaluate the association between MAPT H2 and risk of PiD. Methods: We established the Pick's disease International Consortium (PIC) and collected 338 (60.7% male) pathologically confirmed PiD brains from 39 sites worldwide. 1,312 neurologically healthy clinical controls were recruited from Mayo Clinic Jacksonville, FL (N=881) or Rochester, MN (N=431). For the primary analysis, subjects were directly genotyped for MAPT H1-H2 haplotype-defining variant rs8070723. In secondary analysis, we genotyped and constructed the six-variant MAPT H1 subhaplotypes (rs1467967, rs242557, rs3785883, rs2471738, rs8070723, and rs7521). Findings: Our primary analysis found that the MAPT H2 haplotype was associated with increased risk of PiD (OR: 1.35, 95% CI: 1.12-1.64 P=0.002). In secondary analysis involving H1 subhaplotypes, a protective association with PiD was observed for the H1f haplotype (0.0% vs. 1.2%, P=0.049), with a similar trend noted for H1b (OR: 0.76, 95% CI: 0.58-1.00, P=0.051). The 4-repeat tauopathy risk haplotype MAPT H1c was not associated with PiD susceptibility (OR: 0.93, 95% CI: 0.70-1.25, P=0.65). Interpretation: The PIC represents the first opportunity to perform relatively large-scale studies to enhance our understanding of the pathobiology of PiD. This study demonstrates that in contrast to its protective role in 4R tauopathies, the MAPT H2 haplotype is associated with an increased risk of PiD. This finding is critical in directing isoform-related therapeutics for tauopathies.Item Genome sequencing analysis identifies new loci associated with Lewy body dementia and provides insights into its genetic architecture(Springer Nature, 2021-03) Chia, Ruth; Sabir, Marya S.; Bandres-Ciga, Sara; Saez-Atienzar, Sara; Reynolds, Regina H.; Gustavsson, Emil; Walton, Ronald L.; Ahmed, Sarah; Viollet, Coralie; Ding, Jinhui; Makarious, Mary B.; Diez-Fairen, Monica; Portley, Makayla K.; Shah, Zalak; Abramzon, Yevgeniya; Hernandez, Dena G.; Blauwendraat, Cornelis; Stone, David J.; Eicher, John; Parkkinen, Laura; Ansorge, Olaf; Clark, Lorraine; Honig, Lawrence S.; Marder, Karen; Lemstra, Afina; St. George-Hyslop, Peter; Londos, Elisabet; Morgan, Kevin; Lashley, Tammaryn; Warner, Thomas T.; Jaunmuktane, Zane; Galasko, Douglas; Santana, Isabel; Tienari, Pentti J.; Myllykangas, Liisa; Oinas, Minna; Cairns, Nigel J.; Morris, John C.; Halliday, Glenda M.; Van Deerlin, Vivianna M.; Trojanowski, John Q.; Grassano, Maurizio; Calvo, Andrea; Mora, Gabriele; Canosa, Antonio; Floris, Gianluca; Bohannan, Ryan C.; Brett, Francesca; Gan-Or, Ziv; Geiger, Joshua T.; Moore, Anni; May, Patrick; Krüger, Rejko; Goldstein, David S.; Lopez, Grisel; Tayebi, Nahid; Sidransky, Ellen; Norcliffe-Kaufmann, Lucy; Palma, Jose-Alberto; Kaufmann, Horacio; Shakkottai, Vikram G.; Perkins, Matthew; Newell, Kathy L.; Gasser, Thomas; Schulte, Claudia; Landi, Francesco; Salvi, Erika; Cusi, Daniele; Masliah, Eliezer; Kim, Ronald C.; Caraway, Chad A.; Monuki, Edwin S.; Brunetti, Maura; Dawson, Ted M.; Rosenthal, Liana S.; Albert, Marilyn S.; Pletnikova, Olga; Troncoso, Juan C.; Flanagan, Margaret E.; Mao, Qinwen; Bigio, Eileen H.; Rodríguez-Rodríguez, Eloy; Infante, Jon; Lage, Carmen; González-Aramburu, Isabel; Sanchez-Juan, Pascual; Ghetti, Bernardino; Keith, Julia; Black, Sandra E.; Masellis, Mario; Rogaeva, Ekaterina; Duyckaerts, Charles; Brice, Alexis; Lesage, Suzanne; Xiromerisiou, Georgia; Barrett, Matthew J.; Tilley, Bension S.; Gentleman, Steve; Logroscino, Giancarlo; Serrano, Geidy E.; Beach, Thomas G.; McKeith, Ian G.; Thomas, Alan J.; Attems, Johannes; Morris, Christopher M.; Palmer, Laura; Love, Seth; Troakes, Claire; Al-Sarraj, Safa; Hodges, Angela K.; Aarsland, Dag; Klein, Gregory; Kaiser, Scott M.; Woltjer, Randy; Pastor, Pau; Bekris, Lynn M.; Leverenz, James B.; Besser, Lilah M.; Kuzma, Amanda; Renton, Alan E.; Goate, Alison; Bennett, David A.; Scherzer, Clemens R.; Morris, Huw R.; Ferrari, Raffaele; Albani, Diego; Pickering-Brown, Stuart; Faber, Kelley; Kukull, Walter A.; Morenas-Rodriguez, Estrella; Lleó, Alberto; Fortea, Juan; Alcolea, Daniel; Clarimon, Jordi; Nalls, Mike A.; Ferrucci, Luigi; Resnick, Susan M.; Tanaka, Toshiko; Foroud, Tatiana M.; Graff-Radford, Neill R.; Wszolek, Zbigniew K.; Ferman, Tanis; Boeve, Bradley F.; Hardy, John A.; Topol, Eric J.; Torkamani, Ali; Singleton, Andrew B.; Ryten, Mina; Dickson, Dennis W.; Chiò, Adriano; Ross, Owen A.; Gibbs, J. Raphael; Dalgard, Clifton L.; Traynor, Bryan J.; Scholz, Sonja W.; Pathology and Laboratory Medicine, School of MedicineThe genetic basis of Lewy body dementia (LBD) is not well understood. Here, we performed whole-genome sequencing in large cohorts of LBD cases and neurologically healthy controls to study the genetic architecture of this understudied form of dementia, and to generate a resource for the scientific community. Genome-wide association analysis identified five independent risk loci, whereas genome-wide gene-aggregation tests implicated mutations in the gene GBA. Genetic risk scores demonstrate that LBD shares risk profiles and pathways with Alzheimer's disease and Parkinson's disease, providing a deeper molecular understanding of the complex genetic architecture of this age-related neurodegenerative condition.Item Genome-wide structural variant analysis identifies risk loci for non-Alzheimer's dementias(Elsevier, 2023-05-04) Kaivola, Karri; Chia, Ruth; Ding, Jinhui; Rasheed, Memoona; Fujita, Masashi; Menon, Vilas; Walton, Ronald L.; Collins, Ryan L.; Billingsley, Kimberley; Brand, Harrison; Talkowski, Michael; Zhao, Xuefang; Dewan, Ramita; Stark, Ali; Ray, Anindita; Solaiman, Sultana; Alvarez Jerez, Pilar; Malik, Laksh; Dawson, Ted M.; Rosenthal, Liana S.; Albert, Marilyn S.; Pletnikova, Olga; Troncoso, Juan C.; Masellis, Mario; Keith, Julia; Black, Sandra E.; Ferrucci, Luigi; Resnick, Susan M.; Tanaka, Toshiko; American Genome Center; International LBD Genomics Consortium; International ALS/FTD Consortium; PROSPECT Consortium; Topol, Eric; Torkamani, Ali; Tienari, Pentti; Foroud, Tatiana M.; Ghetti, Bernardino; Landers, John E.; Ryten, Mina; Morris, Huw R.; Hardy, John A.; Mazzini, Letizia; D'Alfonso, Sandra; Moglia, Cristina; Calvo, Andrea; Serrano, Geidy E.; Beach, Thomas G.; Ferman, Tanis; Graff-Radford, Neill R.; Boeve, Bradley F.; Wszolek, Zbigniew K.; Dickson, Dennis W.; Chiò, Adriano; Bennett, David A.; De Jager, Philip L.; Ross, Owen A.; Dalgard, Clifton L.; Gibbs, J. Raphael; Traynor, Bryan J.; Scholz, Sonja W.; Medical and Molecular Genetics, School of MedicineWe characterized the role of structural variants, a largely unexplored type of genetic variation, in two non-Alzheimer's dementias, namely Lewy body dementia (LBD) and frontotemporal dementia (FTD)/amyotrophic lateral sclerosis (ALS). To do this, we applied an advanced structural variant calling pipeline (GATK-SV) to short-read whole-genome sequence data from 5,213 European-ancestry cases and 4,132 controls. We discovered, replicated, and validated a deletion in TPCN1 as a novel risk locus for LBD and detected the known structural variants at the C9orf72 and MAPT loci as associated with FTD/ALS. We also identified rare pathogenic structural variants in both LBD and FTD/ALS. Finally, we assembled a catalog of structural variants that can be mined for new insights into the pathogenesis of these understudied forms of dementia.Item Longitudinal head-to-head comparison of 11C-PiB and 18F-florbetapir PET in a Phase 2/3 clinical trial of anti-amyloid-β monoclonal antibodies in dominantly inherited Alzheimer disease(Springer, 2023) Chen, Charles D.; McCullough, Austin; Gordon, Brian; Joseph-Mathurin, Nelly; Flores, Shaney; McKay, Nicole S.; Hobbs, Diana A.; Hornbeck, Russ; Fagan, Anne M.; Cruchaga, Carlos; Goate, Alison M.; Perrin, Richard J.; Wang, Guoqiao; Li, Yan; Shi, Xinyu; Xiong, Chengjie; Pontecorvo, Michael J.; Klein, Gregory; Su, Yi; Klunk, William E.; Jack, Clifford; Koeppe, Robert; Snider, B. Joy; Berman, Sarah B.; Roberson, Erik D.; Brosch, Jared; Surti, Ghulam; Jiménez-Velázquez, Ivonne Z.; Galasko, Douglas; Honig, Lawrence S.; Brooks, William S.; Clarnette, Roger; Wallon, David; Dubois, Bruno; Pariente, Jérémie; Pasquier, Florence; Sanchez-Valle, Raquel; Shcherbinin, Sergey; Higgins, Ixavier; Tunali, Ilke; Masters, Colin L.; van Dyck, Christopher H.; Masellis, Mario; Hsiung, Robin; Gauthier, Serge; Salloway, Steve; Clifford, David B.; Mills, Susan; Supnet-Bell, Charlene; McDade, Eric; Bateman, Randall J.; Benzinger, Tammie L. S.; DIAN-TU Study Team; Neurology, School of MedicinePurpose: Pittsburgh Compound-B (11C-PiB) and 18F-florbetapir are amyloid-β (Aβ) positron emission tomography (PET) radiotracers that have been used as endpoints in Alzheimer's disease (AD) clinical trials to evaluate the efficacy of anti-Aβ monoclonal antibodies. However, comparing drug effects between and within trials may become complicated if different Aβ radiotracers were used. To study the consequences of using different Aβ radiotracers to measure Aβ clearance, we performed a head-to-head comparison of 11C-PiB and 18F-florbetapir in a Phase 2/3 clinical trial of anti-Aβ monoclonal antibodies. Methods: Sixty-six mutation-positive participants enrolled in the gantenerumab and placebo arms of the first Dominantly Inherited Alzheimer Network Trials Unit clinical trial (DIAN-TU-001) underwent both 11C-PiB and 18F-florbetapir PET imaging at baseline and during at least one follow-up visit. For each PET scan, regional standardized uptake value ratios (SUVRs), regional Centiloids, a global cortical SUVR, and a global cortical Centiloid value were calculated. Longitudinal changes in SUVRs and Centiloids were estimated using linear mixed models. Differences in longitudinal change between PET radiotracers and between drug arms were estimated using paired and Welch two sample t-tests, respectively. Simulated clinical trials were conducted to evaluate the consequences of some research sites using 11C-PiB while other sites use 18F-florbetapir for Aβ PET imaging. Results: In the placebo arm, the absolute rate of longitudinal change measured by global cortical 11C-PiB SUVRs did not differ from that of global cortical 18F-florbetapir SUVRs. In the gantenerumab arm, global cortical 11C-PiB SUVRs decreased more rapidly than global cortical 18F-florbetapir SUVRs. Drug effects were statistically significant across both Aβ radiotracers. In contrast, the rates of longitudinal change measured in global cortical Centiloids did not differ between Aβ radiotracers in either the placebo or gantenerumab arms, and drug effects remained statistically significant. Regional analyses largely recapitulated these global cortical analyses. Across simulated clinical trials, type I error was higher in trials where both Aβ radiotracers were used versus trials where only one Aβ radiotracer was used. Power was lower in trials where 18F-florbetapir was primarily used versus trials where 11C-PiB was primarily used. Conclusion: Gantenerumab treatment induces longitudinal changes in Aβ PET, and the absolute rates of these longitudinal changes differ significantly between Aβ radiotracers. These differences were not seen in the placebo arm, suggesting that Aβ-clearing treatments may pose unique challenges when attempting to compare longitudinal results across different Aβ radiotracers. Our results suggest converting Aβ PET SUVR measurements to Centiloids (both globally and regionally) can harmonize these differences without losing sensitivity to drug effects. Nonetheless, until consensus is achieved on how to harmonize drug effects across radiotracers, and since using multiple radiotracers in the same trial may increase type I error, multisite studies should consider potential variability due to different radiotracers when interpreting Aβ PET biomarker data and, if feasible, use a single radiotracer for the best results.Item Potential genetic modifiers of disease risk and age at onset in patients with frontotemporal lobar degeneration and GRN mutations: a genome-wide association study(Elsevier, 2018-06) Pottier, Cyril; Zhou, Xiaolai; Perkerson, Ralph B.; Baker, Matt; Jenkins, Gregory D.; Serie, Daniel J.; Ghidoni, Roberta; Benussi, Luisa; Binetti, Giuliano; de Munain, Adolfo López; Zulaica, Miren; Moreno, Fermin; Le Ber, Isabelle; Pasquier, Florence; Hannequin, Didier; Sánchez-Valle, Raquel; Antonell, Anna; Lladó, Albert; Parsons, Tammee M.; Finch, NiCole A.; Finger, Elizabeth C.; Lippa, Carol F.; Huey, Edward D.; Neumann, Manuela; Heutink, Peter; Synofzik, Matthis; Wilke, Carlo; Rissman, Robert A.; Slawek, Jaroslaw; Sitek, Emilia; Johannsen, Peter; Nielsen, Jørgen E.; Ren, Yingxue; van Blitterswijk, Marka; DeJesus-Hernandez, Mariely; Christopher, Elizabeth; Murray, Melissa E.; Bieniek, Kevin F.; Evers, Bret M.; Ferrari, Camilla; Rollinson, Sara; Richardson, Anna; Scarpini, Elio; Fumagalli, Giorgio G.; Padovani, Alessandro; Hardy, John; Momeni, Parastoo; Ferrari, Raffaele; Frangipane, Francesca; Maletta, Raffaele; Anfossi, Maria; Gallo, Maura; Petrucelli, Leonard; Suh, EunRan; Lopez, Oscar L.; Wong, Tsz H.; van Rooij, Jeroen G. J.; Seelaar, Harro; Mead, Simon; Caselli, Richard J.; Reiman, Eric M.; Sabbagh, Marwan Noel; Kjolby, Mads; Nykjaer, Anders; Karydas, Anna M.; Boxer, Adam L.; Grinberg, Lea T.; Grafman, Jordan; Spina, Salvatore; Oblak, Adrian; Mesulam, M-Marsel; Weintraub, Sandra; Geula, Changiz; Hodges, John R.; Piguet, Olivier; Brooks, William S.; Irwin, David J.; Trojanowski, John Q.; Lee, Edward B.; Josephs, Keith A.; Parisi, Joseph E.; Ertekin-Taner, Nilüfer; Knopman, David S.; Nacmias, Benedetta; Piaceri, Irene; Bagnoli, Silvia; Sorbi, Sandro; Gearing, Marla; Glass, Jonathan; Beach, Thomas G.; Black, Sandra E.; Masellis, Mario; Rogaeva, Ekaterina; Vonsattel, Jean-Paul; Honig, Lawrence S.; Kofler, Julia; Bruni, Amalia C.; Snowden, Julie; Mann, David; Pickering-Brown, Stuart; Diehl-Schmid, Janine; Winkelmann, Juliane; Galimberti, Daniela; Graff, Caroline; Öijerstedt, Linn; Troakes, Claire; Al-Sarraj, Safa; Cruchaga, Carlos; Cairns, Nigel J.; Rohrer, Jonathan D.; Halliday, Glenda M.; Kwok, John B.; van Swieten, John C.; White, Charles L.; Ghetti, Bernardino; Murell, Jill R.; Mackenzie, Ian R. A.; Hsiung, Ging-Yuek R.; Borroni, Barbara; Rossi, Giacomina; Tagliavini, Fabrizio; Wszolek, Zbigniew K.; Petersen, Ronald C.; Bigio, Eileen H.; Grossman, Murray; Van Deerlin, Vivianna M.; Seeley, William W.; Miller, Bruce L.; Graff-Radford, Neill R.; Boeve, Bradley F.; Dickson, Dennis W.; Biernacka, Joanna M.; Rademakers, Rosa; Pathology and Laboratory Medicine, School of MedicineBACKGROUND: Loss-of-function mutations in GRN cause frontotemporal lobar degeneration (FTLD). Patients with GRN mutations present with a uniform subtype of TAR DNA-binding protein 43 (TDP-43) pathology at autopsy (FTLD-TDP type A); however, age at onset and clinical presentation are variable, even within families. We aimed to identify potential genetic modifiers of disease onset and disease risk in GRN mutation carriers. METHODS: The study was done in three stages: a discovery stage, a replication stage, and a meta-analysis of the discovery and replication data. In the discovery stage, genome-wide logistic and linear regression analyses were done to test the association of genetic variants with disease risk (case or control status) and age at onset in patients with a GRN mutation and controls free of neurodegenerative disorders. Suggestive loci (p<1 × 10-5) were genotyped in a replication cohort of patients and controls, followed by a meta-analysis. The effect of genome-wide significant variants at the GFRA2 locus on expression of GFRA2 was assessed using mRNA expression studies in cerebellar tissue samples from the Mayo Clinic brain bank. The effect of the GFRA2 locus on progranulin concentrations was studied using previously generated ELISA-based expression data. Co-immunoprecipitation experiments in HEK293T cells were done to test for a direct interaction between GFRA2 and progranulin. FINDINGS: Individuals were enrolled in the current study between Sept 16, 2014, and Oct 5, 2017. After quality control measures, statistical analyses in the discovery stage included 382 unrelated symptomatic GRN mutation carriers and 1146 controls free of neurodegenerative disorders collected from 34 research centres located in the USA, Canada, Australia, and Europe. In the replication stage, 210 patients (67 symptomatic GRN mutation carriers and 143 patients with FTLD without GRN mutations pathologically confirmed as FTLD-TDP type A) and 1798 controls free of neurodegenerative diseases were recruited from 26 sites, 20 of which overlapped with the discovery stage. No genome-wide significant association with age at onset was identified in the discovery or replication stages, or in the meta-analysis. However, in the case-control analysis, we replicated the previously reported TMEM106B association (rs1990622 meta-analysis odds ratio [OR] 0·54, 95% CI 0·46-0·63; p=3·54 × 10-16), and identified a novel genome-wide significant locus at GFRA2 on chromosome 8p21.3 associated with disease risk (rs36196656 meta-analysis OR 1·49, 95% CI 1·30-1·71; p=1·58 × 10-8). Expression analyses showed that the risk-associated allele at rs36196656 decreased GFRA2 mRNA concentrations in cerebellar tissue (p=0·04). No effect of rs36196656 on plasma and CSF progranulin concentrations was detected by ELISA; however, co-immunoprecipitation experiments in HEK293T cells did suggest a direct binding of progranulin and GFRA2. INTERPRETATION: TMEM106B-related and GFRA2-related pathways might be future targets for treatments for FTLD, but the biological interaction between progranulin and these potential disease modifiers requires further study. TMEM106B and GFRA2 might also provide opportunities to select and stratify patients for future clinical trials and, when more is known about their potential effects, to inform genetic counselling, especially for asymptomatic individuals. FUNDING: National Institute on Aging, National Institute of Neurological Disorders and Stroke, Canadian Institutes of Health Research, Italian Ministry of Health, UK National Institute for Health Research, National Health and Medical Research Council of Australia, and the French National Research Agency.Item Temporal order of clinical and biomarker changes in familial frontotemporal dementia(Springer Nature, 2022) Staffaroni, Adam M.; Quintana, Melanie; Wendelberger, Barbara; Heuer, Hilary W.; Russell, Lucy L.; Cobigo, Yann; Wolf, Amy; Goh, Sheng-Yang Matt; Petrucelli, Leonard; Gendron, Tania F.; Heller, Carolin; Clark, Annie L.; Taylor, Jack Carson; Wise, Amy; Ong, Elise; Forsberg, Leah; Brushaber, Danielle; Rojas, Julio C.; VandeVrede, Lawren; Ljubenkov, Peter; Kramer, Joel; Casaletto, Kaitlin B.; Appleby, Brian; Bordelon, Yvette; Botha, Hugo; Dickerson, Bradford C.; Domoto-Reilly, Kimiko; Fields, Julie A.; Foroud, Tatiana; Gavrilova, Ralitza; Geschwind, Daniel; Ghoshal, Nupur; Goldman, Jill; Graff-Radford, Jonathon; Graff-Radford, Neill; Grossman, Murray; Hall, Matthew G. H.; Hsiung, Ging-Yuek; Huey, Edward D.; Irwin, David; Jones, David T.; Kantarci, Kejal; Kaufer, Daniel; Knopman, David; Kremers, Walter; Lago, Argentina Lario; Lapid, Maria I.; Litvan, Irene; Lucente, Diane; Mackenzie, Ian R.; Mendez, Mario F.; Mester, Carly; Miller, Bruce L.; Onyike, Chiadi U.; Rademakers, Rosa; Ramanan, Vijay K.; Ramos, Eliana Marisa; Rao, Meghana; Rascovsky, Katya; Rankin, Katherine P.; Roberson, Erik D.; Savica, Rodolfo; Tartaglia, M. Carmela; Weintraub, Sandra; Wong, Bonnie; Cash, David M.; Bouzigues, Arabella; Swift, Imogen J.; Peakman, Georgia; Bocchetta, Martina; Todd, Emily G.; Convery, Rhian S.; Rowe, James B.; Borroni, Barbara; Galimberti, Daniela; Tiraboschi, Pietro; Masellis, Mario; Finger, Elizabeth; van Swieten, John C.; Seelaar, Harro; Jiskoot, Lize C.; Sorbi, Sandro; Butler, Chris R.; Graff, Caroline; Gerhard, Alexander; Langheinrich, Tobias; Laforce, Robert; Sanchez-Valle, Raquel; de Mendonça, Alexandre; Moreno, Fermin; Synofzik, Matthis; Vandenberghe, Rik; Ducharme, Simon; Le Ber, Isabelle; Levin, Johannes; Danek, Adrian; Otto, Markus; Pasquier, Florence; Santana, Isabel; Kornak, John; Boeve, Bradley F.; Rosen, Howard J.; Rohrer, Jonathan D.; Boxer, Adam L.; Frontotemporal Dementia Prevention Initiative (FPI) Investigators; Medicine, School of MedicineUnlike familial Alzheimer’s disease, we have been unable to accurately predict symptom onset in presymptomatic familial frontotemporal dementia (f-FTD) mutation carriers, which is a major hurdle to designing disease prevention trials. We developed multimodal models for f-FTD disease progression and estimated clinical trial sample sizes in C9orf72, GRN, and MAPT mutation carriers. Models included longitudinal clinical and neuropsychological scores, regional brain volumes, and plasma neurofilament light chain (NfL) in 796 carriers and 412 non-carrier controls. We found that the temporal ordering of clinical and biomarker progression differed by genotype. In prevention-trial simulations employing model-based patient selection, atrophy and NfL were the best endpoints, whereas clinical measures were potential endpoints in early symptomatic trials. F-FTD prevention trials are feasible but will likely require global recruitment efforts. These disease progression models will facilitate the planning of f-FTD clinical trials, including the selection of optimal endpoints and enrollment criteria to maximize power to detect treatment effects.