- Browse by Author
Browsing by Author "Masdeu, Joseph C."
Now showing 1 - 10 of 13
Results Per Page
Sort Options
Item Brain inflammation co-localizes highly with tau in mild cognitive impairment due to early-onset Alzheimer's disease(Oxford University Press, 2025) Appleton, Johanna; Finn, Quentin; Zanotti-Fregonara, Paolo; Yu, Meixiang; Faridar, Alireza; Nakawah, Mohammad O.; Zarate, Carlos; Carrillo, Maria C.; Dickerson, Bradford C.; Rabinovici, Gil D.; Apostolova, Liana G.; Masdeu, Joseph C.; Pascual, Belen; Neurology, School of MedicineBrain inflammation, with an increased density of microglia and macrophages, is an important component of Alzheimer's disease and a potential therapeutic target. However, it is incompletely characterized, particularly in patients whose disease begins before the age of 65 years and, thus, have few co-pathologies. Inflammation has been usefully imaged with translocator protein (TSPO) PET, but most inflammation PET tracers cannot image subjects with a low-binder TSPO rs6971 genotype. In an important development, participants with any TSPO genotype can be imaged with a novel tracer, 11C-ER176, that has a high binding potential and a more favourable metabolite profile than other TSPO tracers currently available. We applied 11C-ER176 to detect brain inflammation in mild cognitive impairment (MCI) caused by early-onset Alzheimer's disease. Furthermore, we sought to correlate the brain localization of inflammation, volume loss, elevated amyloid-β (Aβ)and tau. We studied brain inflammation in 25 patients with early-onset amnestic MCI (average age 59 ± 4.5 years, 10 female) and 23 healthy controls (average age 65 ± 6.0 years, 12 female), both groups with a similar proportion of all three TSPO-binding affinities. 11C-ER176 total distribution volume (VT), obtained with an arterial input function, was compared across patients and controls using voxel-wise and region-wise analyses. In addition to inflammation PET, most MCI patients had Aβ (n = 23) and tau PET (n = 21). For Aβ and tau tracers, standard uptake value ratios were calculated using cerebellar grey matter as region of reference. Regional correlations among the three tracers were determined. Data were corrected for partial volume effect. Cognitive performance was studied with standard neuropsychological tools. In MCI caused by early-onset Alzheimer's disease, there was inflammation in the default network, reaching statistical significance in precuneus and lateral temporal and parietal association cortex bilaterally, and in the right amygdala. Topographically, inflammation co-localized most strongly with tau (r = 0.63 ± 0.24). This correlation was higher than the co-localization of Aβ with tau (r = 0.55 ± 0.25) and of inflammation with Aβ (0.43 ± 0.22). Inflammation co-localized least with atrophy (-0.29 ± 0.26). These regional correlations could be detected in participants with any of the three rs6971 TSPO polymorphisms. Inflammation in Alzheimer's disease-related regions correlated with impaired cognitive scores. Our data highlight the importance of inflammation, a potential therapeutic target, in the Alzheimer's disease process. Furthermore, they support the notion that, as shown in experimental tissue and animal models, the propagation of tau in humans is associated with brain inflammation.Item Cerebrospinal fluid biomarkers in the Longitudinal Early-onset Alzheimer's Disease Study(Wiley, 2023) Dage, Jeffrey L.; Eloyan, Ani; Thangarajah, Maryanne; Hammers, Dustin B.; Fagan, Anne M.; Gray, Julia D.; Schindler, Suzanne E.; Snoddy, Casey; Nudelman, Kelly N. H.; Faber, Kelley M.; Foroud, Tatiana; Aisen, Paul; Griffin, Percy; Grinberg, Lea T.; Iaccarino, Leonardo; Kirby, Kala; Kramer, Joel; Koeppe, Robert; Kukull, Walter A.; La Joie, Renaud; Mundada, Nidhi S.; Murray, Melissa E.; Rumbaugh, Malia; Soleimani-Meigooni, David N.; Toga, Arthur W.; Touroutoglou, Alexandra; Vemuri, Prashanthi; Atri, Alireza; Beckett, Laurel A.; Day, Gregory S.; Graff-Radford, Neill R.; Duara, Ranjan; Honig, Lawrence S.; Jones, David T.; Masdeu, Joseph C.; Mendez, Mario F.; Musiek, Erik; Onyike, Chiadi U.; Riddle, Meghan; Rogalski, Emily; Salloway, Stephen; Sha, Sharon J.; Turner, Raymond S.; Wingo, Thomas S.; Wolk, David A.; Womack, Kyle B.; Carrillo, Maria C.; Dickerson, Bradford C.; Rabinovici, Gil D.; Apostolova, Liana G.; LEADS Consortium; Neurology, School of MedicineIntroduction: One goal of the Longitudinal Early Onset Alzheimer's Disease Study (LEADS) is to define the fluid biomarker characteristics of early-onset Alzheimer's disease (EOAD). Methods: Cerebrospinal fluid (CSF) concentrations of Aβ1-40, Aβ1-42, total tau (tTau), pTau181, VILIP-1, SNAP-25, neurogranin (Ng), neurofilament light chain (NfL), and YKL-40 were measured by immunoassay in 165 LEADS participants. The associations of biomarker concentrations with diagnostic group and standard cognitive tests were evaluated. Results: Biomarkers were correlated with one another. Levels of CSF Aβ42/40, pTau181, tTau, SNAP-25, and Ng in EOAD differed significantly from cognitively normal and early-onset non-AD dementia; NfL, YKL-40, and VILIP-1 did not. Across groups, all biomarkers except SNAP-25 were correlated with cognition. Within the EOAD group, Aβ42/40, NfL, Ng, and SNAP-25 were correlated with at least one cognitive measure. Discussion: This study provides a comprehensive analysis of CSF biomarkers in sporadic EOAD that can inform EOAD clinical trial design.Item Comprehensive cross-sectional and longitudinal analyses of plasma neurofilament light across FTD spectrum disorders(Elsevier, 2022) Gendron, Tania F.; Heckman, Michael G.; White, Launia J.; Veire, Austin M.; Pedraza, Otto; Burch, Alexander R.; Bozoki, Andrea C.; Dickerson, Bradford C.; Domoto-Reilly, Kimiko; Foroud, Tatiana; Forsberg, Leah K.; Galasko, Douglas R.; Ghoshal, Nupur; Graff-Radford, Neill R.; Grossman, Murray; Heuer, Hilary W.; Huey, Edward D.; Hsiung, Ging-Yuek R.; Irwin, David J.; Kaufer, Daniel I.; Leger, Gabriel C.; Litvan, Irene; Masdeu, Joseph C.; Mendez, Mario F.; Onyike, Chiadi U.; Pascual, Belen; Ritter, Aaron; Roberson, Erik D.; Rojas, Julio C.; Tartaglia, Maria Carmela; Wszolek, Zbigniew K.; Rosen, Howard; Boeve, Bradley F.; Boxer, Adam L.; ALLFTD consortium; Petrucelli, Leonard; Medical and Molecular Genetics, School of MedicineFrontotemporal dementia (FTD) therapy development is hamstrung by a lack of susceptibility, diagnostic, and prognostic biomarkers. Blood neurofilament light (NfL) shows promise as a biomarker, but studies have largely focused only on core FTD syndromes, often grouping patients with different diagnoses. To expedite the clinical translation of NfL, we avail ARTFL LEFFTDS Longitudinal Frontotemporal Lobar Degeneration (ALLFTD) study resources and conduct a comprehensive investigation of plasma NfL across FTD syndromes and in presymptomatic FTD mutation carriers. We find plasma NfL is elevated in all studied syndromes, including mild cases; increases in presymptomatic mutation carriers prior to phenoconversion; and associates with indicators of disease severity. By facilitating the identification of individuals at risk of phenoconversion, and the early diagnosis of FTD, plasma NfL can aid in participant selection for prevention or early treatment trials. Moreover, its prognostic utility would improve patient care, clinical trial efficiency, and treatment outcome estimations.Item Comprehensive cross-sectional and longitudinal comparisons of plasma glial fibrillary acidic protein and neurofilament light across FTD spectrum disorders(Springer Nature, 2025-03-12) Sheth, Udit; Öijerstedt, Linn; Heckman, Michael G.; White, Launia J.; Heuer, Hilary W.; Lago, Argentina Lario; Forsberg, Leah K.; Faber, Kelley M.; Foroud, Tatiana M.; Rademakers, Rosa; Ramos, Eliana Marisa; Appleby, Brian S.; Bozoki, Andrea C.; Darby, R. Ryan; Dickerson, Bradford C.; Domoto-Reilly, Kimiko; Galasko, Douglas R.; Ghoshal, Nupur; Graff-Radford, Neill R.; Grant, Ian M.; Hales, Chadwick M.; Hsiung, Ging-Yuek Robin; Huey, Edward D.; Irwin, David; Kwan, Justin Y.; Litvan, Irene; Mackenzie, Ian R.; Masdeu, Joseph C.; Mendez, Mario F.; Onyike, Chiadi U.; Pascual, Belen; Pressman, Peter S.; Roberson, Erik D.; Snyder, Allison; Tartaglia, M. Carmela; Seeley, William W.; Dickson, Dennis W.; Rosen, Howard J.; Boeve, Bradley F.; Boxer, Adam L.; Petrucelli, Leonard; Gendron, Tania F.; Medical and Molecular Genetics, School of MedicineBackground: Therapeutic development for frontotemporal dementia (FTD) is hindered by the lack of biomarkers that inform susceptibility/risk, prognosis, and the underlying causative pathology. Blood glial fibrillary acidic protein (GFAP) has garnered attention as a FTD biomarker. However, investigations of GFAP in FTD have been hampered by symptomatic and histopathologic heterogeneity and small cohort sizes contributing to inconsistent findings. Therefore, we evaluated plasma GFAP as a FTD biomarker and compared its performance to that of neurofilament light (NfL) protein, a leading FTD biomarker. Methods: We availed ARTFL LEFFTDS Longitudinal Frontotemporal Lobar Degeneration (ALLFTD) study resources to conduct a comprehensive cross-sectional and longitudinal examination of the susceptibility/risk, prognostic, and predictive performance of GFAP and NfL in the largest series of well-characterized presymptomatic FTD mutation carriers and participants with sporadic or familial FTD syndromes. Utilizing single molecule array technology, we measured GFAP and NfL in plasma from 161 controls, 127 presymptomatic mutation carriers, 702 participants with a FTD syndrome, and 67 participants with mild behavioral and/or cognitive changes. We used multivariable linear regression and Cox proportional hazard models adjusted for co-variates to examine the biomarker utility of baseline GFAP and NfL concentrations or their rates of change. Results: Compared to controls, GFAP and NfL were elevated in each FTD syndrome but GFAP, unlike NfL, poorly discriminated controls from participants with mild symptoms. Similarly, both baseline GFAP and NfL were higher in presymptomatic mutation carriers who later phenoconverted, but NfL better distinguished non-converters from phenoconverters. We additionally observed that GFAP and NfL were associated with disease severity indicators and survival, but NfL far outperformed GFAP. Nevertheless, we validated findings that the GFAP/NfL ratio may discriminate frontotemporal lobar degeneration with tau versus TDP-43 pathology. Conclusions: Our head-to-head comparison of plasma GFAP and NfL as biomarkers for FTD indicate that NfL consistently outmatched GFAP as a prognostic and predictive biomarker for participants with a FTD syndrome, and as a susceptibility/risk biomarker for people at genetic risk of FTD. Our findings underscore the need to include leading biomarkers in investigations evaluating new biomarkers if the field is to fully ascertain their performance and clinical value.Item Differences in baseline cognitive performance between participants with early-onset and late-onset Alzheimer's disease: Comparison of LEADS and ADNI(Wiley, 2025) Hammers, Dustin B.; Eloyan, Ani; Thangarajah, Maryanne; Taurone, Alexander; Beckett, Laurel; Gao, Sujuan; Polsinelli, Angelina J.; Kirby, Kala; Dage, Jeffrey L.; Nudelman, Kelly; Aisen, Paul; Reman, Rema; La Joie, Renaud; Lagarde, Julien; Atri, Alireza; Clark, David; Day, Gregory S.; Duara, Ranjan; Graff-Radford, Neill R.; Honig, Lawrence S.; Jones, David T.; Masdeu, Joseph C.; Mendez, Mario F.; Womack, Kyle; Musiek, Erik; Onyike, Chiadi U.; Riddle, Meghan; Grant, Ian; Rogalski, Emily; Johnson, Erik C. B.; Salloway, Steven; Sha, Sharon J.; Turner, Raymond Scott; Wingo, Thomas S.; Wolk, David A.; Carrillo, Maria C.; Dickerson, Bradford C.; Rabinovici, Gil D.; Apostolova, Liana G.; LEADS Consortium 1 for the Alzheimer's Disease Neuroimaging Initiative; Neurology, School of MedicineIntroduction: Early-onset Alzheimer's disease (EOAD) and late-onset Alzheimer's disease (LOAD) share similar amyloid etiology, but evidence from smaller-scale studies suggests that they manifest differently clinically. Current analyses sought to contrast the cognitive profiles of EOAD and LOAD. Methods: Z-score cognitive-domain composites for 311 amyloid-positive sporadic EOAD and 314 amyloid-positive LOAD participants were calculated from baseline data from age-appropriate control cohorts. Z-score composites were compared between AD groups for each domain. Results: After controlling for cognitive status, EOAD displayed worse visuospatial, executive functioning, and processing speed/attention skills relative to LOAD, and LOAD displayed worse language, episodic immediate memory, and episodic delayed memory. Discussion: Sporadic EOAD possesses distinct cognitive profiles relative to LOAD. Clinicians should be alert for non-amnestic impairments in younger patients to ensure proper identification and intervention using disease-modifying treatments. Highlights: Both early-onset Alzheimer's disease (EOAD) and late-onset Alzheimer's disease (LOAD) participants displayed widespread cognitive impairments relative to their same-aged peers. Cognitive impairments were more severe for EOAD than for LOAD participants in visuospatial and executive domains. Memory and language impairments were more severe for LOAD than for EOAD participants Results were comparable after removing clinical phenotypes of posterior cortical atrophy (PCA), primary progressive aphasia (lv-PPA), and frontal-variant AD.Item Dissociable spatial topography of cortical atrophy in early‐onset and late‐onset Alzheimer's disease: A head‐to‐head comparison of the LEADS and ADNI cohorts(Wiley, 2025) Katsumi, Yuta; Touroutoglou, Alexandra; Brickhouse, Michael; Eloyan, Ani; Eckbo, Ryan; Zaitsev, Alexander; La Joie, Renaud; Lagarde, Julien; Schonhaut, Daniel; Thangarajah, Maryanne; Taurone, Alexander; Vemuri, Prashanthi; Jack, Clifford R., Jr.; Dage, Jeffrey L.; Nudelman, Kelly N. H.; Foroud, Tatiana; Hammers, Dustin B.; Ghetti, Bernardino; Murray, Melissa E.; Newell, Kathy L.; Polsinelli, Angelina J.; Aisen, Paul; Reman, Rema; Beckett, Laurel; Kramer, Joel H.; Atri, Alireza; Day, Gregory S.; Duara, Ranjan; Graff-Radford, Neill R.; Grant, Ian M.; Honig, Lawrence S.; Johnson, Erik C. B.; Jones, David T.; Masdeu, Joseph C.; Mendez, Mario F.; Musiek, Erik; Onyike, Chiadi U.; Riddle, Meghan; Rogalski, Emily; Salloway, Stephen; Sha, Sharon; Turner, R. Scott; Wingo, Thomas S.; Wolk, David A.; Womack, Kyle; Carrillo, Maria C.; Rabinovici, Gil D.; Apostolova, Liana G.; Dickerson, Bradford C.; LEADS Consortium for the Alzheimer's Disease Neuroimaging Initiative; Neurology, School of MedicineIntroduction: Early-onset and late-onset Alzheimer's disease (EOAD and LOAD, respectively) have distinct clinical manifestations, with prior work based on small samples suggesting unique patterns of neurodegeneration. The current study performed a head-to-head comparison of cortical atrophy in EOAD and LOAD, using two large and well-characterized cohorts (LEADS and ADNI). Methods: We analyzed brain structural magnetic resonance imaging (MRI) data acquired from 377 sporadic EOAD patients and 317 sporadicLOAD patients who were amyloid positive and had mild cognitive impairment (MCI) or mild dementia (i.e., early-stage AD), along with cognitively unimpaired participants. Results: After controlling for the level of cognitive impairment, we found a double dissociation between AD clinical phenotype and localization/magnitude of atrophy, characterized by predominant neocortical involvement in EOAD and more focal anterior medial temporal involvement in LOAD. Discussion: Our findings point to the clinical utility of MRI-based biomarkers of atrophy in differentiating between EOAD and LOAD, which may be useful for diagnosis, prognostication, and treatment. Highlights: Early-onset Alzheimer's disease (EOAD) and late-onset AD (LOAD) patients showed distinct and overlapping cortical atrophy patterns. EOAD patients showed prominent atrophy in widespread neocortical regions. LOAD patients showed prominent atrophy in the anterior medial temporal lobe. Regional atrophy was correlated with the severity of global cognitive impairment. Results were comparable when the sample was stratified for mild cognitive impairment (MCI) and dementia.Item Heterogeneous clinical phenotypes of sporadic early-onset Alzheimer's disease: a neuropsychological data-driven approach(Springer Nature, 2025-02-06) Putcha, Deepti; Katsumi, Yuta; Touroutoglou, Alexandra; Eloyan, Ani; Taurone, Alexander; Thangarajah, Maryanne; Aisen, Paul; Dage, Jeffrey L.; Foroud, Tatiana; Jack, Clifford R., Jr.; Kramer, Joel H.; Nudelman, Kelly N. H.; Raman, Rema; Vemuri, Prashanthi; Atri, Alireza; Day, Gregory S.; Duara, Ranjan; Graff-Radford, Neill R.; Grant, Ian M.; Honig, Lawrence S.; Johnson, Erik C. B.; Jones, David T.; Masdeu, Joseph C.; Mendez, Mario F.; Musiek, Erik; Onyike, Chiadi U.; Riddle, Meghan; Rogalski, Emily; Salloway, Stephen; Sha, Sharon; Turner, R. Scott; Wingo, Thomas S.; Wolk, David A.; Womack, Kyle; Carrillo, Maria C.; Rabinovici, Gil D.; Dickerson, Bradford C.; Apostolova, Liana G.; Hammers, Dustin B.; LEADS Consortium; Neurology, School of MedicineBackground: The clinical presentations of early-onset Alzheimer's disease (EOAD) and late-onset Alzheimer's disease are distinct, with EOAD having a more aggressive disease course with greater heterogeneity. Recent publications from the Longitudinal Early-Onset Alzheimer's Disease Study (LEADS) described EOAD as predominantly amnestic, though this phenotypic description was based solely on clinical judgment. To better understand the phenotypic range of EOAD presentation, we applied a neuropsychological data-driven method to subtype the LEADS cohort. Methods: Neuropsychological test performance from 169 amyloid-positive EOAD participants were analyzed. Education-corrected normative comparisons were made using a sample of 98 cognitively normal participants. Comparing the relative levels of impairment between each cognitive domain, we applied a cut-off of 1 SD below all other domain scores to indicate a phenotype of "predominant" impairment in a given cognitive domain. Individuals were otherwise considered to have multidomain impairment. Whole-cortex general linear modeling of cortical atrophy was applied as an MRI-based validation of these distinct clinical phenotypes. Results: We identified 6 phenotypic subtypes of EOAD: Dysexecutive Predominant (22% of sample), Amnestic Predominant (11%), Language Predominant (11%), Visuospatial Predominant (15%), Mixed Amnestic/Dysexecutive Predominant (11%), and Multidomain (30%). These phenotypes did not differ by age, sex, or years of education. The APOE ɛ4 genotype was enriched in the Amnestic Predominant group, who were also rated as least impaired. Cortical thickness analysis validated these clinical phenotypes with dissociations in atrophy patterns observed between the Dysexecutive and Amnestic Predominant groups. In contrast to the heterogeneity observed from our neuropsychological data-driven approach, diagnostic classifications for this same sample based solely on clinical judgment indicated that 82% of individuals were amnestic-predominant, 9% were non-amnestic, 4% met criteria for Posterior Cortical Atrophy, and 5% met criteria for Primary Progressive Aphasia. Conclusion: A neuropsychological data-driven method to phenotype EOAD individuals uncovered a more detailed understanding of the presenting heterogeneity in this atypical AD sample compared to clinical judgment alone. Clinicians and patients may over-report memory dysfunction at the expense of non-memory symptoms. These findings have important implications for diagnostic accuracy and treatment considerations.Item Learning slopes in early-onset Alzheimer's disease(Wiley, 2023) Hammers, Dustin B.; Nemes, Sára; Diedrich, Taylor; Eloyan, Ani; Kirby, Kala; Aisen, Paul; Kramer, Joel; Nudelman, Kelly; Foroud, Tatiana; Rumbaugh, Malia; Atri, Alireza; Day, Gregory S.; Duara, Ranjan; Graff-Radford, Neill R.; Honig, Lawrence S.; Jones, David T.; Masdeu, Joseph C.; Mendez, Mario F.; Musiek, Erik; Onyike, Chiadi U.; Riddle, Meghan; Rogalski, Emily; Salloway, Steve; Sha, Sharon J.; Turner, Raymond Scott; Weintraub, Sandra; Wingo, Thomas S.; Wolk, David A.; Wong, Bonnie; Carrillo, Maria C.; Dickerson, Bradford C.; Rabinovici, Gil D.; Apostolova, Liana G.; LEADS Consortium; Neurology, School of MedicineObjective: Investigation of learning slopes in early-onset dementias has been limited. The current study aimed to highlight the sensitivity of learning slopes to discriminate disease severity in cognitively normal participants and those diagnosed with early-onset dementia with and without β-amyloid positivity. METHOD: Data from 310 participants in the Longitudinal Early-Onset Alzheimer's Disease Study (aged 41 to 65) were used to calculate learning slope metrics. Learning slopes among diagnostic groups were compared, and the relationships of slopes with standard memory measures were determined. RESULTS: Worse learning slopes were associated with more severe disease states, even after controlling for demographics, total learning, and cognitive severity. A particular metric-the learning ratio (LR)-outperformed other learning slope calculations across analyses. CONCLUSIONS: Learning slopes appear to be sensitive to early-onset dementias, even when controlling for the effect of total learning and cognitive severity. The LR may be the learning measure of choice for such analyses. Highlights: Learning is impaired in amyloid-positive EOAD, beyond cognitive severity scores alone. Amyloid-positive EOAD participants perform worse on learning slopes than amyloid-negative participants. Learning ratio appears to be the learning metric of choice for EOAD participants.Item Longitudinal cognitive performance of participants with sporadic early onset Alzheimer's disease from LEADS(Wiley, 2025) Hammers, Dustin B.; Eloyan, Ani; Taurone, Alexander; Thangarajah, Maryanne; Gao, Sujuan; Beckett, Laurel; Polsinelli, Angelina J.; Kirby, Kala; Dage, Jeffrey L.; Nudelman, Kelly; Aisen, Paul; Reman, Rema; La Joie, Renaud; Lagarde, Julien; Atri, Alireza; Clark, David; Day, Gregory S.; Duara, Ranjan; Graff-Radford, Neill R.; Grant, Ian; Honig, Lawrence S.; Johnson, Erik C. B.; Jones, David T.; Masdeu, Joseph C.; Mendez, Mario F.; Womack, Kyle; Musiek, Erik; Onyike, Chiadi U.; Riddle, Meghan; Rogalski, Emily; Salloway, Steven; Sha, Sharon J.; Turner, Raymond Scott; Wingo, Thomas S.; Wolk, David A.; Carrillo, Maria C.; Rabinovici, Gil D.; Dickerson, Bradford C.; Apostolova, Liana G.; LEADS Consortium; Neurology, School of MedicineIntroduction: Early-onset Alzheimer's disease (EOAD) manifests prior to the age of 65, and affects 4%-8% of patients with Alzheimer's disease (AD). The current analyses sought to examine longitudinal cognitive trajectories of participants with early-onset dementia. Methods: Data from 307 cognitively normal (CN) volunteer participants and those with amyloid-positive EOAD or amyloid-negative cognitive impairment (EOnonAD) were compared. Cognitive trajectories across a comprehensive cognitive battery spanning 42 months were examined using mixed-effects modeling. Results: The EOAD group displayed worse cognition at baseline relative to EOnonAD and CN groups, and more aggressive declines in cognition over time. The largest effects were observed on measures of executive functioning domains, while memory declines were blunted in EOAD. Discussion: EOAD declined 2-4× faster than EOnonAD, and EOAD pathology is not restricted to memory networks. Early identification of deficits is critical to ensure that individuals with sporadic EOAD can be considered for treatment using disease-modifying medications. Highlights: Represents the most comprehensive longitudinal characterization of sporadic EOAD to date. The trajectory of cognitive declines was steep for EOAD participants and worse than for other groups. Executive functioning measures exhibited the greatest declines over time in EOAD.Item Pathogenic variants in the Longitudinal Early-onset Alzheimer's Disease Study cohort(Wiley, 2023) Nudelman, Kelly N. H.; Jackson, Trever; Rumbaugh, Malia; Eloyan, Ani; Abreu, Marco; Dage, Jeffrey L.; Snoddy, Casey; Faber, Kelley M.; Foroud, Tatiana; Hammers, Dustin B.; DIAN/DIAN-TU Clinical/Genetics Committee; Taurone, Alexander; Thangarajah, Maryanne; Aisen, Paul; Beckett, Laurel; Kramer, Joel; Koeppe, Robert; Kukull, Walter A.; Murray, Melissa E.; Toga, Arthur W.; Vemuri, Prashanthi; Atri, Alireza; Day, Gregory S.; Duara, Ranjan; Graff-Radford, Neill R.; Honig, Lawrence S.; Jones, David T.; Masdeu, Joseph C.; Mendez, Mario; Musiek, Erik; Onyike, Chiadi U.; Riddle, Meghan; Rogalski, Emily; Salloway, Stephen; Sha, Sharon J.; Turner, R. Scott; Wingo, Thomas S.; Wolk, David A.; Carrillo, Maria C.; Dickerson, Bradford C.; Rabinovici, Gil D.; Apostolova, Liana G.; LEADS Consortium; Medical and Molecular Genetics, School of MedicineIntroduction: One goal of the Longitudinal Early-onset Alzheimer's Disease Study (LEADS) is to investigate the genetic etiology of early onset (40-64 years) cognitive impairment. Toward this goal, LEADS participants are screened for known pathogenic variants. Methods: LEADS amyloid-positive early-onset Alzheimer's disease (EOAD) or negative early-onset non-AD (EOnonAD) cases were whole exome sequenced (N = 299). Pathogenic variant frequency in APP, PSEN1, PSEN2, GRN, MAPT, and C9ORF72 was assessed for EOAD and EOnonAD. Gene burden testing was performed in cases compared to similar-age cognitively normal controls in the Parkinson's Progression Markers Initiative (PPMI) study. Results: Previously reported pathogenic variants in the six genes were identified in 1.35% of EOAD (3/223) and 6.58% of EOnonAD (5/76). No genes showed enrichment for carriers of rare functional variants in LEADS cases. Discussion: Results suggest that LEADS is enriched for novel genetic causative variants, as previously reported variants are not observed in most cases. Highlights: Sequencing identified eight cognitively impaired pathogenic variant carriers. Pathogenic variants were identified in PSEN1, GRN, MAPT, and C9ORF72. Rare variants were not enriched in APP, PSEN1/2, GRN, and MAPT. The Longitudinal Early-onset Alzheimer's Disease Study (LEADS) is a key resource for early-onset Alzheimer's genetic research.