- Browse by Author
Browsing by Author "Manley, Geoffrey T."
Now showing 1 - 10 of 18
Results Per Page
Sort Options
Item Association of Sex and Age With Mild Traumatic Brain Injury-Related Symptoms: A TRACK-TBI Study(American Medical Association, 2021-04-01) Levin, Harvey S.; Temkin, Nancy R.; Barber, Jason; Nelson, Lindsay D.; Robertson, Claudia; Brennan, Jeffrey; Stein, Murray B.; Yue, John K.; Giacino, Joseph T.; McCrea, Michael A.; Diaz-Arrastia, Ramon; Mukherjee, Pratik; Okonkwo, David O.; Boase, Kim; Markowitz, Amy J.; Bodien, Yelena; Taylor, Sabrina; Vassar, Mary J.; Manley, Geoffrey T.; TRACK-TBI Investigators; Adeoye, Opeolu; Badjatia, Neeraj; Bullock, M. Ross; Chesnut, Randall; Corrigan, John D.; Crawford, Karen; Dikmen, Sureyya; Duhaime, Ann-Christine; Ellenbogen, Richard; Feeser, V. Ramana; Ferguson, Adam R.; Foreman, Brandon; Gardner, Raquel; Gaudette, Etienne; Gonzalez, Luis; Gopinath, Shankar; Gullapalli, Rao; Hemphill, J. Claude; Hotz, Gillian; Jain, Sonia; Keene, C. Dirk; Korley, Frederick K.; Kramer, Joel; Kreitzer, Natalie; Lindsell, Chris; Machamer, Joan; Madden, Christopher; Martin, Alastair; McAllister, Thomas; Merchant, Randall; Nolan, Amber; Ngwenya, Laura B.; Noel, Florence; Palacios, Eva; Puccio, Ava; Rabinowitz, Miri; Rosand, Jonathan; Sander, Angelle; Satris, Gabriella; Schnyer, David; Seabury, Seth; Sun, Xiaoying; Toga, Arthur; Valadka, Alex; Wang, Kevin; Yuh, Esther; Zafonte, Ross; Psychiatry, School of MedicineImportance: Knowledge of differences in mild traumatic brain injury (mTBI) recovery by sex and age may inform individualized treatment of these patients. Objective: To identify sex-related differences in symptom recovery from mTBI; secondarily, to explore age differences within women, who demonstrate poorer outcomes after TBI. Design, setting, and participants: The prospective cohort study Transforming Research and Clinical Knowledge in Traumatic Brain Injury (TRACK-TBI) recruited 2000 patients with mTBI from February 26, 2014, to July 3, 2018, and 299 patients with orthopedic trauma (who served as controls) from January 26, 2016, to July 27, 2018. Patients were recruited from 18 level I trauma centers and followed up for 12 months. Data were analyzed from August 19, 2020, to March 3, 2021. Exposures: Patients with mTBI (defined by a Glasgow Coma Scale score of 13-15) triaged to head computed tomography in 24 hours or less; patients with orthopedic trauma served as controls. Main outcomes and measures: Measured outcomes included (1) the Rivermead Post Concussion Symptoms Questionnaire (RPQ), a 16-item self-report scale that assesses postconcussion symptom severity over the past 7 days relative to preinjury; (2) the Posttraumatic Stress Disorder Checklist for the Diagnostic and Statistical Manual of Mental Disorders (Fifth Edition) (PCL-5), a 20-item test that measures the severity of posttraumatic stress disorder symptoms; (3) the Patient Health Questionnaire-9 (PHQ-9), a 9-item scale that measures depression based on symptom frequency over the past 2 weeks; and (4) the Brief Symptom Inventory-18 (BSI-18), an 18-item scale of psychological distress (split into Depression and Anxiety subscales). Results: A total of 2000 patients with mTBI (1331 men [67%; mean (SD) age, 41.0 (17.3) years; 1026 White (78%)] and 669 women [33%; mean (SD) age, 43.0 (18.5) years; 505 (76%) White]). After adjustment of multiple comparisons, significant TBI × sex interactions were observed for cognitive symptoms (B = 0.76; 5% false discovery rate-corrected P = .02) and somatic RPQ symptoms (B = 0.80; 5% false discovery rate-corrected P = .02), with worse symptoms in women with mTBI than men, but no sex difference in symptoms in control patients with orthopedic trauma. Within the female patients evaluated, there was a significant TBI × age interaction for somatic RPQ symptoms, which were worse in female patients with mTBI aged 35 to 49 years compared with those aged 17 to 34 years (B = 1.65; P = .02) or older than 50 years (B = 1.66; P = .02). Conclusions and relevance: This study found that women were more vulnerable than men to persistent mTBI-related cognitive and somatic symptoms, whereas no sex difference in symptom burden was seen after orthopedic injury. Postconcussion symptoms were also worse in women aged 35 to 49 years than in younger and older women, but further investigation is needed to corroborate these findings and to identify the mechanisms involved. Results suggest that individualized clinical management of mTBI should consider sex and age, as some women are especially predisposed to chronic postconcussion symptoms even 12 months after injury.Item Central Curation of Glasgow Outcome Scale-Extended Data: Lessons Learned from TRACK-TBI(Mary Ann Liebert, 2021) Boase, Kim; Machamer, Joan; Temkin, Nancy R.; Dikmen, Sureyya; Wilson, Lindsay; Nelson, Lindsay D.; Barber, Jason; Bodien, Yelena G.; Giacino, Joseph T.; Markowitz, Amy J.; McCrea, Michael A.; Satris, Gabriela; Stein, Murray B.; Taylor, Sabrina R.; Manley, Geoffrey T.; TRACK-TBI Investigators; Psychiatry, School of MedicineThe Glasgow Outcome Scale (GOS) in its original or extended (GOSE) form is the most widely used assessment of global disability in traumatic brain injury (TBI) research. Several publications have reported concerns about assessor scoring inconsistencies, but without documentation of contributing factors. We reviewed 6801 GOSE assessments collected longitudinally, across 18 sites in the 5-year, observational Transforming Research and Clinical Knowledge in TBI (TRACK-TBI) study. We recorded error rates (i.e., corrections to a section or an overall rating) based on site assessor documentation and categorized scoring issues, which then informed further training. In cohort 1 (n = 1261; February 2014 to May 2016), 24% of GOSEs had errors identified by central review. In cohort 2 (n = 1130; June 2016 to July 2018), acquired after curation of cohort 1 data, feedback, and further training of site assessors, the error rate was reduced to 10%. GOSE sections associated with the most frequent interpretation and scoring difficulties included whether current functioning represented a change from pre-injury (466 corrected ratings in cohort 1; 62 in cohort 2), defining dependency in the home and community (163 corrections in cohort 1; three in cohort 2) and return to work/school (72 corrections in cohort 1; 35 in cohort 2). These results highlight the importance of central review in improving consistency across sites and over time. Establishing clear scoring criteria, coupled with ongoing guidance and feedback to data collectors, is essential to avoid scoring errors and resultant misclassification, which carry potential to result in "failure" of clinical trials that rely on the GOSE as their primary outcome measure.Item Comparing the Quality of Life after Brain Injury-Overall Scale and Satisfaction with Life Scale as Outcome Measures for Traumatic Brain Injury Research(Mary Ann Liebert, 2021) Kreitzer, Natalie; Jain, Sonia; Young, Jacob S.; Sun, Xiaoying; Stein, Murray B.; McCrea, Michael A.; Levin, Harvey S.; Giacino, Joseph T.; Markowitz, Amy J.; Manley, Geoffrey T.; Nelson, Lindsay D.; Transforming Research and Clinical Knowledge in Traumatic Brain Injury (TRACK-TBI) Investigators; Psychiatry, School of MedicineIt is important to measure quality of life (QoL) after traumatic brain injury (TBI), yet limited studies have compared QoL inventories. In 2579 TBI patients, orthopedic trauma controls, and healthy friend control participants, we compared the Quality of Life After Brain Injury-Overall Scale (QOLIBRI-OS), developed for TBI patients, to the Satisfaction with Life Scale (SWLS), an index of generic life satisfaction. We tested the hypothesis that group differences (TBI and orthopedic trauma vs. healthy friend controls) would be larger for the QOLIBRI-OS than the SWLS and that the QOLIBRI-OS would manifest more substantial changes over time in the injured groups, demonstrating more relevance of the QOLIBRI-OS to traumatic injury recovery. (1) We compared the group differences (TBI vs. orthopedic trauma control vs. friend control) in QoL as indexed by the SWLS versus the QOLIBRI-OS and (2) characterized changes across time in these two inventories across 1 year in these three groups. Our secondary objective was to characterize the relationship between TBI severity and QoL. As compared with healthy friend controls, the QOLIBRI reflected greater reductions in QoL than the SWLS for both the TBI group (all time points) and the orthopedic trauma control group (2 weeks and 3 months). The QOLIBRI-OS better captured expected improvements in QoL during the injury recovery course in injured groups than the SWLS, which demonstrated smaller changes over time. TBI severity was not consistently or robustly associated with self-reported QoL. The findings imply that, as compared with the SWLS, the QOLIBRI-OS appears to identify QoL issues more specifically relevant to traumatically injured patients and may be a more appropriate primary QoL outcome measure for research focused on the sequelae of traumatic injuries.Item COMT Val 158 Met polymorphism is associated with post-traumatic stress disorder and functional outcome following mild traumatic brain injury(Elsevier, 2017-01) Winkler, Ethan A.; Yue, John K.; Ferguson, Adam R.; Temkin, Nancy R.; Stein, Murray B.; Barber, Jason; Yuh, Esther L.; Sharma, Sourabh; Satris, Gabriela G.; McAllister, Thomas W.; Rosand, Jonathan; Sorani, Marco D.; Lingsma, Hester F.; Tarapore, Phiroz E.; Burchard, Esteban G.; Hu, Donglei; Eng, Celeste; Wang, Kevin K.W.; Mukherjee, Pratik; Okonkwo, David O.; Diaz-Arrastia, Ramon; Manley, Geoffrey T.; TRACK-TBI Investigators; Psychiatry, School of MedicineMild traumatic brain injury (mTBI) results in variable clinical trajectories and outcomes. The source of variability remains unclear, but may involve genetic variations, such as single nucleotide polymorphisms (SNPs). A SNP in catechol-o-methyltransferase (COMT) is suggested to influence development of post-traumatic stress disorder (PTSD), but its role in TBI remains unclear. Here, we utilize the Transforming Research and Clinical Knowledge in Traumatic Brain Injury Pilot (TRACK-TBI Pilot) study to investigate whether the COMT Val158Met polymorphism is associated with PTSD and global functional outcome as measured by the PTSD Checklist - Civilian Version and Glasgow Outcome Scale Extended (GOSE), respectively. Results in 93 predominately Caucasian subjects with mTBI show that the COMT Met158 allele is associated with lower incidence of PTSD (univariate odds ratio (OR) of 0.25, 95% CI [0.09-0.69]) and higher GOSE scores (univariate OR 2.87, 95% CI [1.20-6.86]) 6-months following injury. The COMT Val158Met genotype and PTSD association persists after controlling for race (multivariable OR of 0.29, 95% CI [0.10-0.83]) and pre-existing psychiatric disorders/substance abuse (multivariable OR of 0.32, 95% CI [0.11-0.97]). PTSD emerged as a strong predictor of poorer outcome on GOSE (multivariable OR 0.09, 95% CI [0.03-0.26]), which persists after controlling for age, GCS, and race. When accounting for PTSD in multivariable analysis, the association of COMT genotype and GOSE did not remain significant (multivariable OR 1.73, 95% CI [0.69-4.35]). Whether COMT genotype indirectly influences global functional outcome through PTSD remains to be determined and larger studies in more diverse populations are needed to confirm these findings.Item COMT Val 158 Met polymorphism is associated with nonverbal cognition following mild traumatic brain injury(Springer, 2016-01) Winker, Ethan A.; Yue, John K.; McAllister, Thomas W.; Temkin, Nancy R.; Oh, Sam S.; Burchard, Esteban G.; Hu, Donglei; Ferguson, Adam R.; Lingsma, Hester F.; Burke, John F.; Sorani, Marco D.; Rosand, Jonathan; Yuh, Esther L.; Barber, Jason; Tarapore, Phiroz E.; Gardner, Raquel C.; Sharma, Sourabh; Satris, Gabriela G.; Eng, Celeste; Puccio, Ava M.; Wang, Kevin K.W.; Mukherjee, Pratik; Valadka, Alex B.; Okonkwo, David O.; Diaz-Arrastia, Ramon; Manley, Geoffrey T.; Department of Psychiatry, IU School of MedicineMild traumatic brain injury (mTBI) results in variable clinical outcomes, which may be influenced by genetic variation. A single-nucleotide polymorphism in catechol-o-methyltransferase (COMT), an enzyme which degrades catecholamine neurotransmitters, may influence cognitive deficits following moderate and/or severe head trauma. However, this has been disputed, and its role in mTBI has not been studied. Here, we utilize the Transforming Research and Clinical Knowledge in Traumatic Brain Injury Pilot (TRACK-TBI Pilot) study to investigate whether the COMT Val (158) Met polymorphism influences outcome on a cognitive battery 6 months following mTBI--Wechsler Adult Intelligence Test Processing Speed Index Composite Score (WAIS-PSI), Trail Making Test (TMT) Trail B minus Trail A time, and California Verbal Learning Test, Second Edition Trial 1-5 Standard Score (CVLT-II). All patients had an emergency department Glasgow Coma Scale (GCS) of 13-15, no acute intracranial pathology on head CT, and no polytrauma as defined by an Abbreviated Injury Scale (AIS) score of ≥3 in any extracranial region. Results in 100 subjects aged 40.9 (SD 15.2) years (COMT Met (158) /Met (158) 29 %, Met (158) /Val (158) 47 %, Val (158) /Val (158) 24 %) show that the COMT Met (158) allele (mean 101.6 ± SE 2.1) associates with higher nonverbal processing speed on the WAIS-PSI when compared to Val (158) /Val (158) homozygotes (93.8 ± SE 3.0) after controlling for demographics and injury severity (mean increase 7.9 points, 95 % CI [1.4 to 14.3], p = 0.017). The COMT Val (158) Met polymorphism did not associate with mental flexibility on the TMT or with verbal learning on the CVLT-II. Hence, COMT Val (158) Met may preferentially modulate nonverbal cognition following uncomplicated mTBI.Registry: ClinicalTrials.gov Identifier NCT01565551.Item Diffusion Tensor Imaging Reveals Elevated Diffusivity of White Matter Microstructure that Is Independently Associated with Long-Term Outcome after Mild Traumatic Brain Injury: A TRACK-TBI Study(Mary Ann Liebert, 2022) Palacios, Eva M.; Yuh, Esther L.; Mac Donald, Christine L.; Bourla, Ioanna; Wren-Jarvis, Jamie; Sun, Xiaoying; Vassar, Mary J.; Diaz-Arrastia, Ramon; Giacino, Joseph T.; Okonkwo, David O.; Robertson, Claudia S.; Stein, Murray B.; Temkin, Nancy; McCrea, Michael A.; Levin, Harvey S.; Markowitz, Amy J.; Jain, Sonia; Manley, Geoffrey T.; Mukherjee, Pratik; TRACK-TBI Investigators; Psychiatry, School of MedicineDiffusion tensor imaging (DTI) literature on single-center studies contains conflicting results regarding acute effects of mild traumatic brain injury (mTBI) on white matter (WM) microstructure and the prognostic significance. This larger-scale multi-center DTI study aimed to determine how acute mTBI affects WM microstructure over time and how early WM changes affect long-term outcome. From Transforming Research and Clinical Knowledge in Traumatic Brain Injury (TRACK-TBI), a cohort study at 11 United States level 1 trauma centers, a total of 391 patients with acute mTBI ages 17 to 60 years were included and studied at two weeks and six months post-injury. Demographically matched friends or family of the participants were the control group (n = 148). Axial diffusivity (AD), fractional anisotropy (FA), mean diffusivity (MD), and radial diffusivity (RD) were the measures of WM microstructure. The primary outcome was the Glasgow Outcome Scale Extended (GOSE) score of injury-related functional limitations across broad life domains at six months post-injury. The AD, MD, and RD were higher and FA was lower in mTBI versus friend control (FC) at both two weeks and six months post-injury throughout most major WM tracts of the cerebral hemispheres. In the mTBI group, AD and, to a lesser extent, MD decreased in WM from two weeks to six months post-injury. At two weeks post-injury, global WM AD and MD were both independently associated with six-month incomplete recovery (GOSE <8 vs = 8) even after accounting for demographic, clinical, and other imaging factors. DTI provides reliable imaging biomarkers of dynamic WM microstructural changes after mTBI that have utility for patient selection and treatment response in clinical trials. Continued technological advances in the sensitivity, specificity, and precision of diffusion magnetic resonance imaging hold promise for routine clinical application in mTBI.Item DRD2 C957T polymorphism is associated with improved 6-month verbal learning following traumatic brain injury(Springer, 2017-01) Yue, John K.; Winkler, Ethan A.; Rick, Jonathan W.; Burke, John F.; McAllister, Thomas W.; Oh, Sam S.; Burchard, Esteban G.; Hu, Donglei; Rosand, Jonathan; Temkin, Nancy R.; Korley, Frederick K.; Sorani, Marco D.; Ferguson, Adam R.; Lingsma, Hester F.; Sharma, Sourabh; Robinson, Caitlin K.; Yuh, Esther L.; Tarapore, Phiroz E.; Wang, Kevin K.W.; Puccio, Ava M.; Mukherjee, Pratik; Diaz-Arrastia, Ramon; Gordon, Wayne A.; Valadka, Alex B.; Okonkwo, David O.; Manley, Geoffrey T.; TRACK-TBI Investigators; Psychiatry, School of MedicineTraumatic brain injury (TBI) often leads to heterogeneous clinical outcomes, which may be influenced by genetic variation. A single-nucleotide polymorphism (SNP) in the dopamine D2 receptor (DRD2) may influence cognitive deficits following TBI. However, part of the association with DRD2 has been attributed to genetic variability within the adjacent ankyrin repeat and kinase domain containing 1 protein (ANKK1). Here, we utilize the Transforming Research and Clinical Knowledge in Traumatic Brain Injury Pilot (TRACK-TBI Pilot) study to investigate whether a novel DRD2 C957T polymorphism (rs6277) influences outcome on a cognitive battery at 6 months following TBI-California Verbal Learning Test (CVLT-II), Wechsler Adult Intelligence Test Processing Speed Index Composite Score (WAIS-PSI), and Trail Making Test (TMT). Results in 128 Caucasian subjects show that the rs6277 T-allele associates with better verbal learning and recall on CVLT-II Trials 1-5 (T-allele carrier 52.8 ± 1.3 points, C/C 47.9 ± 1.7 points; mean increase 4.9 points, 95% confidence interval [0.9 to 8.8]; p = 0.018), Short-Delay Free Recall (T-carrier 10.9 ± 0.4 points, C/C 9.7 ± 0.5 points; mean increase 1.2 points [0.1 to 2.5]; p = 0.046), and Long-Delay Free Recall (T-carrier 11.5 ± 0.4 points, C/C 10.2 ± 0.5 points; mean increase 1.3 points [0.1 to 2.5]; p = 0.041) after adjusting for age, education years, Glasgow Coma Scale, presence of acute intracranial pathology on head computed tomography scan, and genotype of the ANKK1 SNP rs1800497 using multivariable regression. No association was found between DRD2 C947T and non-verbal processing speed (WAIS-PSI) or mental flexibility (TMT) at 6 months. Hence, DRD2 C947T (rs6277) may be associated with better performance on select cognitive domains independent of ANKK1 following TBI.Item Functional Outcomes Over the First Year After Moderate to Severe Traumatic Brain Injury in the Prospective, Longitudinal TRACK-TBI Study(American Medical Association, 2021) McCrea, Michael A.; Giacino, Joseph T.; Barber, Jason; Temkin, Nancy R.; Nelson, Lindsay D.; Levin, Harvey S.; Dikmen, Sureyya; Stein, Murray; Bodien, Yelena G.; Boase, Kim; Taylor, Sabrina R.; Vassar, Mary; Mukherjee, Pratik; Robertson, Claudia; Diaz-Arrastia, Ramon; Okonkwo, David O.; Markowitz, Amy J.; Manley, Geoffrey T.; TRACK-TBI Investigators; Adeoye, Opeolu; Badjatia, Neeraj; Bullock, M. Ross; Chesnut, Randall; Corrigan, John D.; Crawford, Karen; Duhaime, Ann-Christine; Ellenbogen, Richard; Feeser, V. Ramana; Ferguson, Adam R.; Foreman, Brandon; Gardner, Raquel; Gaudette, Etienne; Goldman, Dana; Gonzalez, Luis; Gopinath, Shankar; Gullapalli, Rao; Hemphill, J. Claude; Hotz, Gillian; Jain, Sonia; Keene, C. Dirk; Korley, Frederick K.; Kramer, Joel; Kreitzer, Natalie; Lindsell, Chris; Machamer, Joan; Madden, Christopher; Martin, Alastair; McAllister, Thomas; Merchant, Randall; Ngwenya, Laura B.; Noel, Florence; Nolan, Amber; Palacios, Eva; Perl, Daniel; Puccio, Ava; Rabinowitz, Miri; Rosand, Jonathan; Sander, Angelle; Satris, Gabriella; Schnyer, David; Seabury, Seth; Sherer, Mark; Toga, Arthur; Valadka, Alex; Wang, Kevin; Yue, John K.; Yuh, Esther; Zafonte, Ross; Psychiatry, School of MedicineImportance: Moderate to severe traumatic brain injury (msTBI) is a major cause of death and disability in the US and worldwide. Few studies have enabled prospective, longitudinal outcome data collection from the acute to chronic phases of recovery after msTBI. Objective: To prospectively assess outcomes in major areas of life function at 2 weeks and 3, 6, and 12 months after msTBI. Design, setting, and participants: This cohort study, as part of the Transforming Research and Clinical Knowledge in TBI (TRACK-TBI) study, was conducted at 18 level 1 trauma centers in the US from February 2014 to August 2018 and prospectively assessed longitudinal outcomes, with follow-up to 12 months postinjury. Participants were patients with msTBI (Glasgow Coma Scale scores 3-12) extracted from a larger group of patients with mild, moderate, or severe TBI who were enrolled in TRACK-TBI. Data analysis took place from October 2019 to April 2021. Exposures: Moderate or severe TBI. Main outcomes and measures: The Glasgow Outcome Scale-Extended (GOSE) and Disability Rating Scale (DRS) were used to assess global functional status 2 weeks and 3, 6, and 12 months postinjury. Scores on the GOSE were dichotomized to determine favorable (scores 4-8) vs unfavorable (scores 1-3) outcomes. Neurocognitive testing and patient reported outcomes at 12 months postinjury were analyzed. Results: A total of 484 eligible patients were included from the 2679 individuals in the TRACK-TBI study. Participants with severe TBI (n = 362; 283 men [78.2%]; median [interquartile range] age, 35.5 [25-53] years) and moderate TBI (n = 122; 98 men [80.3%]; median [interquartile range] age, 38 [25-53] years) were comparable on demographic and premorbid variables. At 2 weeks postinjury, 36 of 290 participants with severe TBI (12.4%) and 38 of 93 participants with moderate TBI (41%) had favorable outcomes (GOSE scores 4-8); 301 of 322 in the severe TBI group (93.5%) and 81 of 103 in the moderate TBI group (78.6%) had moderate disability or worse on the DRS (total score ≥4). By 12 months postinjury, 142 of 271 with severe TBI (52.4%) and 54 of 72 with moderate TBI (75%) achieved favorable outcomes. Nearly 1 in 5 participants with severe TBI (52 of 270 [19.3%]) and 1 in 3 with moderate TBI (23 of 71 [32%]) reported no disability (DRS score 0) at 12 months. Among participants in a vegetative state at 2 weeks, 62 of 79 (78%) regained consciousness and 14 of 56 with available data (25%) regained orientation by 12 months. Conclusions and relevance: In this study, patients with msTBI frequently demonstrated major functional gains, including recovery of independence, between 2 weeks and 12 months postinjury. Severe impairment in the short term did not portend poor outcomes in a substantial minority of patients with msTBI. When discussing prognosis during the first 2 weeks after injury, clinicians should be particularly cautious about making early, definitive prognostic statements suggesting poor outcomes and withdrawal of life-sustaining treatment in patients with msTBI.Item High-Sensitivity C-Reactive Protein is a Prognostic Biomarker of Six-Month Disability after Traumatic Brain Injury: Results from the TRACK-TBI Study(Mary Ann Liebert, 2021) Xu, Linda B.; Yue, John K.; Korley, Frederick; Puccio, Ava M.; Yuh, Esther L.; Sun, Xiaoying; Rabinowitz, Miri; Vassar, Mary J.; Taylor, Sabrina R.; Winkler, Ethan A.; Puffer, Ross C.; Deng, Hansen; McCrea, Michael; Stein, Murray B.; Robertson, Claudia S.; Levin, Harvey S.; Dikmen, Sureyya; Temkin, Nancy R.; Giacino, Joseph T.; Mukherjee, Pratik; Wang, Kevin K. W.; Okonkwo, David O.; Markowitz, Amy J.; Jain, Sonia; Manley, Geoffrey T.; Diaz-Arrastia, Ramon; TRACK-TBI Investigators; Psychiatry, School of MedicineSystemic inflammation impacts outcome after traumatic brain injury (TBI), but most TBI biomarker studies have focused on brain-specific proteins. C-reactive protein (CRP) is a widely used biomarker of inflammation with potential as a prognostic biomarker after TBI. The Transforming Research and Clinical Knowledge in Traumatic Brain Injury (TRACK-TBI) study prospectively enrolled TBI patients within 24 h of injury, as well as orthopedic injury and uninjured controls; biospecimens were collected at enrollment. A subset of hospitalized participants had blood collected on day 3, day 5, and 2 weeks. High-sensitivity CRP (hsCRP) and glial fibrillary acidic protein (GFAP) were measured. Receiver operating characteristic analysis was used to evaluate the prognostic ability of hsCRP for 6-month outcome, using the Glasgow Outcome Scale-Extended (GOSE). We included 1206 TBI subjects, 122 orthopedic trauma controls (OTCs), and 209 healthy controls (HCs). Longitudinal biomarker sampling was performed in 254 hospitalized TBI subjects and 19 OTCs. hsCRP rose between days 1 and 5 for TBI and OTC subjects, and fell by 2 weeks, but remained elevated compared with HCs (p < 0.001). Longitudinally, hsCRP was significantly higher in the first 2 weeks for subjects with death/severe disability (GOSE <5) compared with those with moderate disability/good recovery (GOSE ≥5); AUC was highest at 2 weeks (AUC = 0.892). Combining hsCRP and GFAP at 2 weeks produced AUC = 0.939 for prediction of disability. Serum hsCRP measured within 2 weeks of TBI is a prognostic biomarker for disability 6 months later. hsCRP may have utility as a biomarker of target engagement for anti-inflammatory therapies.Item Invariance of the Bifactor Structure of Mild Traumatic Brain Injury (mTBI) Symptoms on the Rivermead Post-Concussion Symptoms Questionnaire across Time, Demographic Characteristics, and Clinical Groups: A TRACK-TBI Study(Sage, 2021) Agtarap, Stephanie; Kramer, Mark D.; Campbell-Sills, Laura; Yuh, Esther; Mukherjee, Pratik; Manley, Geoffrey T.; McCrea, Michael A.; Dikmen, Sureyya; Giacino, Joseph T.; Stein, Murray B.; Nelson, Lindsay D.; TRACK-TBI Investigators; Psychiatry, School of MedicineThis study aimed to elucidate the structure of the Rivermead Postconcussion Symptoms Questionnaire (RPQ) and evaluate its longitudinal and group variance. Factor structures were developed and compared in 1,011 patients with mild traumatic brain injury (mTBI; i.e., Glasgow Coma Scale score 13-15) from the Transforming Research and Clinical Knowledge in TBI study, using RPQ data collected at 2 weeks, and 3, 6, and 12 months postinjury. A bifactor model specifying a general factor and emotional, cognitive, and visual symptom factors best represented the latent structure of the RPQ. The model evinced strict measurement invariance over time and across sex, age, race, psychiatric history, and mTBI severity groups, indicating that differences in symptom endorsement were completely accounted for by these latent dimensions. While highly unidimensional, the RPQ has multidimensional features observable through a bifactor model, which may help differentiate symptom expression patterns in the future.