- Browse by Author
Browsing by Author "Manicke, Nicholas E."
Now showing 1 - 10 of 21
Results Per Page
Sort Options
Item Advances in Gas Chromatography and Vacuum UV Spectroscopy: Applications to Fire Debris Analysis & Drugs of Abuse(2020-12) Roberson, Zackery Ray; Goodpaster, John V.; Manicke, Nicholas E.; Webb, Ian K.; Laulhé, SébastienIn forensic chemistry, a quicker and more accurate analysis of a sample is always being pursued. Speedy analyses allow the analyst to provide quick turn-around times and potentially decrease back-logs that are known to be a problem in the field. Accurate analyses are paramount with the futures and lives of the accused potentially on the line. One of the most common methods of analysis in forensic chemistry laboratories is gas chromatography, chosen for the relative speed and efficiency afforded by this method. Two major routes were attempted to further improve on gas chromatography applications in forensic chemistry. The first route was to decrease separation times for analysis of ignitable liquid residues by using micro-bore wall coated open-tubular columns. Micro-bore columns are much shorter and have higher separation efficiencies than the standard columns used in forensic chemistry, allowing for faster analysis times while maintaining the expected peak separation. Typical separation times for fire debris samples are between thirty minutes and one hour, the micro-bore columns were able to achieve equivalent performance in three minutes. The reduction in analysis time was demonstrated by analysis of ignitable liquid residues from simulated fire debris exemplars. The second route looked at a relatively new detector for gas chromatography known as a vacuum ultraviolet (VUV) spectrophotometer. The VUV detector uses traditional UV and far-ultraviolet light to probe the pi and sigma bonds of the gas phase analytes as well as Rydberg traditions to produce spectra that are nearly unique to a compound. Thus far, the only spectra that were not discernable were from enantiomers, otherwise even diastereomers have been differentiated. The specificity attained with the VUV detector has achieved differentiation of compounds that mass spectrometry, the most common detection method for chromatography in forensic chemistry labs, has difficulty distinguishing. This specificity has been demonstrated herein by analyzing various classes of drugs of abuse and applicability to “real world” samples has been demonstrated by analysis of de-identified seized samples.Item Advances in Gas Chromatography, Thermolysis, Mass Spectrometry, and Vacuum Ultraviolet Spectrometry(2021-05) Rael, Ashur; Goodpaster, John V.; Manicke, Nicholas E.; Naumann, Christoph A.; Minto, Robert E.In the area of forensic chemistry, improved or new analysis methods are continually being investigated. One common and powerful technique used in forensic chemistry is wall-coated open-tubular column (WCOT) gas chromatography with electron ionization single quadrupole mass spectrometry (GC-MS). Improvements to and effectiveness of alternatives to this instrumental platform were explored in an array of parallel inquiries. The areas studied included the column for the chromatographic separation, the universal detection method employed, and the fragmentation method used to enhance molecular identification. Superfine-micropacked capillary (SFµPC) columns may provide an alternative to commercial packed GC columns and WCOT GC columns that combines the benefits of the larger sample capacity of packed columns and the benefits of the excellent separation capabilities and mass spectrometry (MS) flow rate compatibility of WCOT columns. SFµPC columns suffer from high inlet pressure requirements and prior reported work has required specialized instrumentation for their use. Fabrication of and chromatography with SFµPC GC columns was successfully achieved with typical GC-MS instrumentation and within the flow rate limit of a MS. Additionally, the use of higher viscosity carrier gasses was demonstrated to reduce the required inlet pressure for SFµPC GC columns. Recently, a new vacuum ultraviolet spectrometer (VUV) universal detector has been commercialized for GC. The ability of VUV detectors to acquire absorbance spectra from 125 nm to 430 nm poses a potential alternative to MS. As such, GC-VUV provides an exciting potential alternative approach to achieving excellent quantitative and qualitative analysis across a wide range of analytes. The performance of VUV and MS detectors for forensic analysis in terms of quantitative and qualitative analysis was compared. Analysis of alkylbenzenes in ignitable liquids was explored, which can be important evidence from suspected arson fires and are difficult to differentiate with MS. The VUV detector was found to have superior specificity and comparable sensitivity to the MS detector in scan mode. Addition of thermolysis (Th) as an orthogonal fragmentation pathway provides the opportunity to increase the differences between MS fragmentation patterns. Fragmentation has been widely established to aid in identification of molecules with MS by providing characteristic fragments at characteristic relative abundances. However, molecules with very similar structures do not result in sizable spectral differences in all cases with typical MS fragmentation techniques. A series of Th units were fabricated and integrated into GC-Th-MS instruments. Th-MS was conducted with the thermally labile nitrate esters across a range of instrumentation and thermal conditions.Item Analysis of Biofluids by Paper Spray Mass Spectrometry: Advances and Challenges(2016-03) Manicke, Nicholas E.; Bills, Brandon J.; Zhang, Chengsen; Department of Chemistry & Chemical Biology, School of ScienceAbstract Paper spray MS is part of a cohort of ambient ionization or direct analysis methods that seek to analyze complex samples without prior sample preparation. Extraction and electrospray ionization occur directly from the paper substrate upon which a dried matrix spot is stored. Paper spray MS is capable of detecting drugs directly from dried blood, plasma and urine spots at the low ng/ml to pg/ml levels without sample preparation. No front end separation is performed, so MS/MS or high-resolution MS is required. Here, we discuss paper spray methodology, give a comprehensive literature review of the use of paper spray MS for bioanalysis, discuss technological advancements and variations on this technique and discuss some of its limitations.Item Detection of chemical warfare agent simulants and hydrolysis products in biological samples by paper spray mass spectrometry(RSC, 2017-05) McKenna, Josiah; Dhummakupt, Elizabeth S.; Connell, Theresa; Demond, Paul S.; Miller, Dennis B.; Nilles, J. Michael; Manicke, Nicholas E.; Glaros, Trevor; Chemistry and Chemical Biology, School of SciencePaper spray ionization coupled to a high resolution tandem mass spectrometer (a quadrupole orbitrap) was used to identify and quantitate chemical warfare agent (CWA) simulants and their hydrolysis products in blood and urine. Three CWA simulants, dimethyl methylphosphonate (DMMP), trimethyl phosphate (TMP), and diisopropyl methylphosphonate (DIMP), and their isotopically labeled standards were analyzed in human whole blood and urine. Calibration curves were generated and tested with continuing calibration verification standards. Limits of detection for these three compounds were in the low ng mL−1 range for the direct analysis of both blood and urine samples. Five CWA hydrolysis products, ethyl methylphosphonic acid (EMPA), isopropyl methylphosphonic acid (IMPA), isobutyl methylphosphonic acid (iBuMPA), cyclohexyl methylphosphonic acid (CHMPA), and pinacolyl methylphosphonic acid (PinMPA), were also analyzed. Calibration curves were generated in both positive and negative ion modes. Limits of detection in the negative ion mode ranged from 0.36 ng mL−1 to 1.25 ng mL−1 in both blood and urine for the hydrolysis products. These levels were well below those found in victims of the Tokyo subway attack of 2 to 135 ng mL−1. Improved stability and robustness of the paper spray technique in the negative ion mode was achieved by the addition of chlorinated solvents. These applications demonstrate that paper spray mass spectrometry (PS-MS) can be used for rapid, sample preparation-free detection of chemical warfare agents and their hydrolysis products at physiologically relevant concentrations in biological samples.Item Development of a prototype blood fractionation cartridge for plasma analysis by paper spray mass spectrometry(Elsevier, 2016-12) Bills, Brandon J.; Manicke, Nicholas E.; Chemistry and Chemical Biology, School of ScienceDrug monitoring of biofluids is often time consuming and prohibitively expensive. Analysis of dried blood spots offers advantages, such as reduced sample volume, but depends on extensive sample preparation and the presence of a trained lab technician. Paper spray mass spectrometry allows rapid analysis of small molecules from blood spots with minimal sample preparation, however, plasma is often the preferred matrix for bioanalysis. Plasma spots can be analyzed by paper spray MS, but a centrifugation step to isolate the plasma is required. We demonstrate here the development of a paper spray cartridge containing a plasma fractionation membrane to perform automatic on-cartridge plasma fractionation from whole blood samples. Three commercially available blood fractionation membranes were evaluated based on: 1) accuracy of drug concentration determination in plasma, and 2) extent of cell lysis and/or penetration. The accuracy of drug concentration determination was quantitatively determined using high performance liquid chromatography–mass spectrometry (HPLC–MS). While the fractionation membranes were capable of yielding plasma samples with low levels of cell lysis, the membranes did exhibit drug binding to varying degrees, as indicated by a decrease in the drug concentration relative to plasma obtained by centrifugation. Using the membrane exhibiting the lowest binding, we developed a composite paper spray cartridge incorporating the selected fractionation membrane. Quantitative analysis of the plasma samples by paper spray MS yielded results similar to those found with HPLC–MS, but without the need for offline extraction or chromatography.Item Direct Analysis of Aerosolized Chemical Warfare Simulants Captured on a Modified Glass-Based Substrate by “Paper-Spray” Ionization(ACS, 2017-09) Dhummakupt, Elizabeth S.; Mach, Phillip M.; Carmany, Daniel; Demond, Paul S.; Moran, Theodore S.; Connell, Theresa; Wylie, Harold S.; Manicke, Nicholas E.; Nilles, J. Michael; Glaros, Trevor; Chemistry and Chemical Biology, School of SciencePaper spray ionization mass spectrometry offers a rapid alternative platform requiring no sample preparation. Aerosolized chemical warfare agent (CWA) simulants trimethyl phosphate, dimethyl methylphosphonate, and diisopropyl methylphosphonate were captured by passing air through a glass fiber filter disk within a disposable paper spray cartridge. CWA simulants were aerosolized at varying concentrations using an in-house built aerosol chamber. A custom 3D-printed holder was designed and built to facilitate the aerosol capture onto the paper spray cartridges. The air flow through each of the collection devices was maintained equally to ensure the same volume of air sampled across methods. Each approach yielded linear calibration curves with R2 values between 0.98–0.99 for each compound and similar limits of detection in terms of disbursed aerosol concentration. While the glass fiber filter disk has a higher capture efficiency (≈40%), the paper spray method produces analogous results even with a lower capture efficiency (≈1%). Improvements were made to include glass fiber filters as the substrate within the paper spray cartridge consumable. Glass fiber filters were then treated with ammonium sulfate to decrease chemical interaction with the simulants. This allowed for improved direct aerosol capture efficiency (>40%). Ultimately, the limits of detection were reduced to levels comparable to current worker population limits of 1 × 10–6 mg/m3.Item Dual-technique assay for the analysis of organophosphorus compounds for environmental and chemical defense applications(Elsevier, 2022) Dowling, Sarah N.; Manicke, Nicholas E.; Chemistry and Chemical Biology, School of ScienceForensic and environmental sciences often rely on chromatographic separations coupled to mass spectrometry to detect contaminants in complex matrices. However, these methods require lengthy analysis times and sample preparation that is not suitable for analysis in the field. In this work, two analytical methods were combined that are known for their potential for portable analysis. The ambient ionization technique, paper spray mass spectrometry (paper spray-MS) was coupled to paper-based surface enhanced Raman spectroscopy (pSERS) to detect toxic organophosphorus molecules from the same substrate, with a total analysis time of less than five minutes. The coupling of these techniques presents a potential for portable Raman screening followed by MS confirmation in a field-forward laboratory. A cartridge insert was designed and 3D printed to facilitate the sample collection and analysis for PS-MS and pSERS. Three chemical warfare agent simulants: dimethyl methylphosphonate (DMMP), diethyl phosphoramidate (DEPA), and diisopropyl methylphosphonate (DIMP) were included in the method due to having similar chemistries to G- and V-series chemical warfare agents (CWAs). Organophosphorus pesticides, malathion and dichlorvos, with similar mechanisms of action to the CWAs, were also included in the method. Because CWAs quickly degrade in the environment, the CWA hydrolysis products, ethyl methylphosphonic acid (EMPA), isopropyl methylphosphonic acid (IMPA), pinacolyl methylphosphonic acid (PinMPA), methylphosphonic acid (MPA), 2-Diethylaminoethanethiol (EDA), and 2-Diisopropylaminoethanethiol (IDA) were also studied. A mixture of the analytes was used to create calibration curves using the dual-polarity, PS-MS method with sub-ng to low ng limits of detection. A dilution series, spanning 3 orders of magnitude, was made using pSERS, also with low ng limits of detection. These experiments show the potential and feasibility for PS-MS coupled to pSERS to be used to rapidly, screen and confirm the presence of organophosphorus molecules, in complex matrices, with portable instrumentation.Item Enhancing Nonfouling and Sensitivity of Surface-Enhanced Raman Scattering Substrates for Potent Drug Analysis in Blood Plasma via Fabrication of a Flexible Plasmonic Patch(ACS, 2021-01) Masterson, Adrianna N.; Hati, Sumon; Ren, Greta; Liyanage, Thakshila; Manicke, Nicholas E.; Goodpaster, John V.; Sardar, Rajesh; Chemistry and Chemical Biology, School of ScienceSurface-enhanced Raman scattering (SERS) is an ultrasensitive analytical technique, which is capable of providing high specificity; thus, it can be used for toxicological drug assay (detection and quantification). However, SERS-based drug analysis directly in human biofluids requires mitigation of fouling and nonspecificity effects that commonly appeared from unwanted adsorption of endogenous biomolecules present in biofluids (e.g., blood plasma and serum) onto the SERS substrate. Here, we report a bottom-up fabrication strategy to prepare ultrasensitive SERS substrates, first, by functionalizing chemically synthesized gold triangular nanoprisms (Au TNPs) with poly(ethylene glycol)-thiolate in the solid state to avoid protein fouling and second, by generating flexible plasmonic patches to enhance SERS sensitivity via the formation of high-intensity electromagnetic hot spots. Poly(ethylene glycol)-thiolate-functionalized Au TNPs in the form of flexible plasmonic patches show a twofold-improved signal-to-noise ratio in comparison to triethylamine (TEA)-passivated Au TNPs. Furthermore, the plasmonic patch displays a SERS enhancement factor of 4.5 ×107. Utilizing the Langmuir adsorption model, we determine the adsorption constant of drugs for two different surface ligands and observe that the drug molecules display stronger affinity for poly(ethylene glycol) ligands than TEA. Our density functional theory calculations unequivocally support the interaction between drug molecules and poly(ethylene glycol) moieties. Furthermore, the universality of the plasmonic patch for SERS-based drug detection is demonstrated for cocaine, JWH-018, and opioids (fentanyl, despropionyl fentanyl, and heroin) and binary mixture (trace amount of fentanyl in heroin) analyses. We demonstrate the applicability of flexible plasmonic patches for the selective assay of fentanyl at picogram/milliliter concentration levels from drug-of-abuse patients’ blood plasma. The fentanyl concentration calculated in the patients’ blood plasma from SERS analysis is in excellent agreement with the values determined using the paper spray ionization mass spectrometry technique. We believe that the flexible plasmonic patch fabrication strategy would be widely applicable to any plasmonic nanostructure for SERS-based chemical sensing for clinical toxicology and therapeutic drug monitoring.Item Female Blow Flies As Vertebrate Resource Indicators(Springer Nature, 2019-07-22) Owings, Charity G.; Banerjee, Aniruddha; Asher, Travis M. D.; Gilhooly, William P.; Tuceryan, Anais; Huffine, Mary; Skaggs, Christine L.; Adebowale, Iyun M.; Manicke, Nicholas E.; Picard, Christine J.; Biology, School of ScienceRapid vertebrate diversity evaluation is invaluable for monitoring changing ecosystems worldwide. Wild blow flies naturally recover DNA and chemical signatures from animal carcasses and feces. We demonstrate the power of blow flies as biodiversity monitors through sampling of flies in three environments with varying human influences: Indianapolis, IN and two national parks (the Great Smoky Mountains and Yellowstone). Dissected fly guts underwent vertebrate DNA sequencing (12S and 16S rRNA genes) and fecal metabolite screening. Integrated Nested Laplace Approximation (INLA) was used to determine the most important abiotic factor influencing fly-derived vertebrate richness. In 720 min total sampling time, 28 vertebrate species were identified, with 42% of flies containing vertebrate resources: 23% DNA, 5% feces, and 14% contained both. The species of blow fly used was not important for vertebrate DNA recovery, however the use of female flies versus male flies directly influenced DNA detection. Temperature was statistically relevant across environments in maximizing vertebrate detection (mean = 0.098, sd = 0.048). This method will empower ecologists to test vertebrate community ecology theories previously out of reach due practical challenges associated with traditional sampling.Item Ionization Suppression and Recovery in Direct Biofluid Analysis using Paper Spray Mass Spectrometry(Springer, 2016-04) Vega, Caroline; Spence, Corina; Zhang, Chengsen; Bills, Brandon J.; Manicke, Nicholas E.; Department of Chemistry & Chemical Biology, School of SciencePaper spray mass spectrometry is a method for the direct analysis of biofluid samples in which extraction of analytes from dried biofluid spots and electrospray ionization occur from the paper on which the dried sample is stored. We examined matrix effects in the analysis of small molecule drugs from urine, plasma, and whole blood. The general method was to spike stable isotope labeled analogs of each analyte into the spray solvent, while the analyte itself was in the dried biofluid. Intensity of the labeled analog is proportional to ionization efficiency, whereas the ratio of the analyte intensity to the labeled analog in the spray solvent is proportional to recovery. Ion suppression and recovery were found to be compound- and matrix-dependent. Highest levels of ion suppression were obtained for poor ionizers (e.g., analytes lacking basic aliphatic amine groups) in urine and approached –90%. Ion suppression was much lower or even absent for good ionizers (analytes with aliphatic amines) in dried blood spots. Recovery was generally highest in urine and lowest in blood. We also examined the effect of two experimental parameters on ion suppression and recovery: the spray solvent and the sample position (how far away from the paper tip the dried sample was spotted). Finally, the change in ion suppression and analyte elution as a function of time was examined by carrying out a paper spray analysis of dried plasma spots for 5 min by continually replenishing the spray solvent.
- «
- 1 (current)
- 2
- 3
- »