- Browse by Author
Browsing by Author "Magnotta, Vincent"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item Blood-Based Markers of Neuronal Injury in Adult-Onset Myotonic Dystrophy Type 1(Frontiers Media, 2022-01-20) van der Plas, Ellen; Long, Jeffrey D.; Koscik, Timothy R.; Magnotta, Vincent; Monckton, Darren G.; Cumming, Sarah A.; Gottschalk, Amy C.; Hefti, Marco; Gutmann, Laurie; Nopoulos, Peggy C.; Neurology, School of MedicineIntroduction: The present study had four aims. First, neuronal injury markers, including neurofilament light (NF-L), total tau, glial fibrillary acidic protein (GFAP) and ubiquitin C-terminal hydrolase (UCH-L1), were compared between individuals with and without adult-onset myotonic dystrophy type 1 (DM1). Second, the impact of age and CTG repeat on brain injury markers was evaluated. Third, change in brain injury markers across the study period was quantified. Fourth, associations between brain injury markers and cerebral white matter (WM) fractional anisotropy (FA) were identified. Methods: Yearly assessments, encompassing blood draws and diffusion tensor imaging on a 3T scanner, were conducted on three occasions. Neuronal injury markers were quantified using single molecule array (Simoa). Results: The sample included 53 patients and 70 controls. NF-L was higher in DM1 patients than controls, with individuals in the premanifest phases of DM1 (PreDM1) exhibiting intermediate levels ( χ 2 ( 2 ) = 38.142, P < 0.001). Total tau was lower in DM1 patients than controls (Estimate = -0.62, 95% confidence interval [CI] -0.95: -0.28, P < 0.001), while GFAP was elevated in PreDM1 only (Estimate = 30.37, 95% CI 10.56:50.19, P = 0.003). Plasma concentrations of UCH-L1 did not differ between groups. The age by CTG interaction predicted NF-L: patients with higher estimated progenitor allelege length (ePAL) had higher NF-L at a younger age, relative to patients with lower CTG repeat; however, the latter exhibited faster age-related change (Estimate = -0.0021, 95% CI -0.0042: -0.0001, P = 0.045). None of the markers changed substantially over the study period. Finally, cerebral WM FA was significantly associated with NF-L (Estimate = -42.86, 95% CI -82.70: -3.02, P = 0.035). Interpretation: While NF-L appears sensitive to disease onset and severity, its utility as a marker of progression remains to be determined. The tau assay may have low sensitivity to tau pathology associated with DM1.Item Longitudinal changes in white matter as measured with diffusion tensor imaging in adult-onset myotonic dystrophy type 1(Elsevier, 2023) Koscik, Timothy R.; van der Plas, Ellen; Long, Jeffrey D.; Cross, Stephen; Gutmann, Laurie; Cumming, Sarah A.; Monckton, Darren G.; Shields, Richard K.; Magnotta, Vincent; Nopoulos, Peggy C.; Neurology, School of MedicineMyotonic dystrophy type 1 is characterized by neuromuscular degeneration. Our objective was to compare change in white matter microstructure (fractional anisotropy, radial and axial diffusivity), and functional/clinical measures. Participants underwent yearly neuroimaging and neurocognitive assessments over three-years. Assessments encompassed full-scale intelligence, memory, language, visuospatial skills, attention, processing speed, and executive function, as well as clinical symptoms of muscle/motor function, apathy, and hypersomnolence. Mixed effects models were used to examine differences. 69 healthy adults (66.2% women) and 41 DM1 patients (70.7% women) provided 156 and 90 observations, respectively. There was a group by elapsed time interaction for cerebral white matter, where DM1 patients exhibited declines in white matter (all p<0.05). Likewise, DM1 patients either declined (motor), improved more slowly (intelligence), or remained stable (executive function) for functional outcomes. White matter was associated with functional performance; intelligence was predicted by axial (r = 0.832; p<0.01) and radial diffusivity (r = 0.291, p<0.05), and executive function was associated with anisotropy (r = 0.416, p<0.001), and diffusivity (axial: r = 0.237, p = 0.05 and radial: r = 0.300, p<0.05). Indices of white matter health are sensitive to progression in DM1. These results are important for clinical trial design, which utilize short intervals to establish treatment efficacy.Item Longitudinal diffusion changes in prodromal and early HD: Evidence of white-matter tract deterioration(Wiley, 2017-03) Shaffer, Joseph J.; Ghayoor, Ali; Long, Jeffrey D.; Kim, Regina Eun-Young; Lourens, Spencer; O’Donnell, Lauren J.; Westin, Carl-Fredrik; Rathi, Yogesh; Magnotta, Vincent; Paulsen, Jane S.; Johnson, Hans J.; Biostatistics, School of Public HealthINTRODUCTION: Huntington's disease (HD) is a genetic neurodegenerative disorder that primarily affects striatal neurons. Striatal volume loss is present years before clinical diagnosis; however, white matter degradation may also occur prior to diagnosis. Diffusion-weighted imaging (DWI) can measure microstructural changes associated with degeneration that precede macrostructural changes. DWI derived measures enhance understanding of degeneration in prodromal HD (pre-HD). METHODS: As part of the PREDICT-HD study, N = 191 pre-HD individuals and 70 healthy controls underwent two or more (baseline and 1-5 year follow-up) DWI, with n = 649 total sessions. Images were processed using cutting-edge DWI analysis methods for large multicenter studies. Diffusion tensor imaging (DTI) metrics were computed in selected tracts connecting the primary motor, primary somato-sensory, and premotor areas of the cortex with the subcortical caudate and putamen. Pre-HD participants were divided into three CAG-Age Product (CAP) score groups reflecting clinical diagnosis probability (low, medium, or high probabilities). Baseline and longitudinal group differences were examined using linear mixed models. RESULTS: Cross-sectional and longitudinal differences in DTI measures were present in all three CAP groups compared with controls. The high CAP group was most affected. CONCLUSIONS: This is the largest longitudinal DWI study of pre-HD to date. Findings showed DTI differences, consistent with white matter degeneration, were present up to a decade before predicted HD diagnosis. Our findings indicate a unique role for disrupted connectivity between the premotor area and the putamen, which may be closely tied to the onset of motor symptoms in HD. Hum Brain Mapp 38:1460-1477, 2017. © 2017 Wiley Periodicals, Inc.Item Neurocognitive Features of Motor Premanifest Individuals With Myotonic Dystrophy Type 1(Wolters Kluwer, 2021-03-18) van der Plas, Ellen; Koscik, Timothy R.; Magnotta, Vincent; Cumming, Sarah A.; Monckton, Darren; Gutmann, Laurie; Nopoulos, Peggy; Neurology, School of MedicineObjective: The goal of the study was to identify brain and functional features associated with premanifest phases of adult-onset myotonic dystrophy type 1 (i.e., PreDM1). Methods: This cross-sectional study included 68 healthy adults (mean age = 43.4 years, SD = 12.9), 13 individuals with PreDM1 (mean age: 47.4 years, SD = 16.3), and 37 individuals with manifest DM1 (mean age = 45.2 years, SD = 9.3). The primary outcome measures included fractional anisotropy (FA), motor measures (Muscle Impairment Rating Scale, Grooved Pegboard, Finger-Tapping Test, and grip force), general cognitive abilities (Wechsler Adult Intelligence Scales), sleep quality (Scales for Outcomes in Parkinson's Disease-Sleep), and apathy (Apathy Evaluation Scale). Results: Individuals with PreDM1 exhibited an intermediate level of white matter FA abnormality, where whole-brain FA was lower relative to healthy controls (difference of the estimated marginal mean [EMMdifference] = 0.02, 95% confidence interval (CI) 0.01-0.03, p < 0.001), but the PreDM1 group had significantly higher FA than did individuals with manifest DM1 (EMMdifference = 0.02, 95% CI 0.009-0.03, p < 0.001). Individuals with PreDM1 exhibited reduced performance on the finger-tapping task relative to control peers (EMMdifference = 5.70, 95% CI 0.51-11.00, p = 0.03), but performance of the PreDM1 group was better than that of the manifest DM1 group (EMMdifference = 5.60, 95% CI 0.11-11.00, p = 0.05). Hypersomnolence in PreDM1 was intermediate between controls (EMMdifference = -1.70, 95% CI -3.10-0.35, p = 0.01) and manifest DM1 (EMMdifference = -2.10, 95% CI -3.50-0.60, p = 0.006). Conclusions: Our findings highlight key CNS and functional deficits associated with PreDM1, offering insight in early disease course.