- Browse by Author
Browsing by Author "Ma, Qin"
Now showing 1 - 10 of 12
Results Per Page
Sort Options
Item A graph neural network model to estimate cell-wise metabolic flux using single-cell RNA-seq data(Cold Spring Harbor Laboratory, 2021) Alghamdi, Norah; Chang, Wennan; Dang, Pengtao; Lu, Xiaoyu; Wan, Changlin; Gampala, Silpa; Huang, Zhi; Wang, Jiashi; Ma, Qin; Zang, Yong; Fishel, Melissa; Cao, Sha; Zhang, Chi; Medical and Molecular Genetics, School of MedicineThe metabolic heterogeneity and metabolic interplay between cells are known as significant contributors to disease treatment resistance. However, with the lack of a mature high-throughput single-cell metabolomics technology, we are yet to establish systematic understanding of the intra-tissue metabolic heterogeneity and cooperative mechanisms. To mitigate this knowledge gap, we developed a novel computational method, namely, single-cell flux estimation analysis (scFEA), to infer the cell-wise fluxome from single-cell RNA-sequencing (scRNA-seq) data. scFEA is empowered by a systematically reconstructed human metabolic map as a factor graph, a novel probabilistic model to leverage the flux balance constraints on scRNA-seq data, and a novel graph neural network-based optimization solver. The intricate information cascade from transcriptome to metabolome was captured using multilayer neural networks to capitulate the nonlinear dependency between enzymatic gene expressions and reaction rates. We experimentally validated scFEA by generating an scRNA-seq data set with matched metabolomics data on cells of perturbed oxygen and genetic conditions. Application of scFEA on this data set showed the consistency between predicted flux and the observed variation of metabolite abundance in the matched metabolomics data. We also applied scFEA on five publicly available scRNA-seq and spatial transcriptomics data sets and identified context- and cell group-specific metabolic variations. The cell-wise fluxome predicted by scFEA empowers a series of downstream analyses including identification of metabolic modules or cell groups that share common metabolic variations, sensitivity evaluation of enzymes with regards to their impact on the whole metabolic flux, and inference of cell-tissue and cell-cell metabolic communications.Item Deep learning analysis of single‐cell data in empowering clinical implementation(Wiley, 2022) Ma, Anjun; Wang, Juexin; Xu, Dong; Ma, Qin; Medical and Molecular Genetics, School of MedicineItem Define and visualize pathological architectures of human tissues from spatially resolved transcriptomics using deep learning(Elsevier, 2022-08-24) Chang, Yuzhou; He, Fei; Wang, Juexin; Chen, Shuo; Li, Jingyi; Liu, Jixin; Yu, Yang; Su, Li; Ma, Anjun; Allen, Carter; Lin, Yu; Sun, Shaoli; Liu, Bingqiang; Otero, José Javier; Chung, Dongjun; Fu, Hongjun; Li, Zihai; Xu, Dong; Ma, Qin; Medical and Molecular Genetics, School of MedicineSpatially resolved transcriptomics provides a new way to define spatial contexts and understand the pathogenesis of complex human diseases. Although some computational frameworks can characterize spatial context via various clustering methods, the detailed spatial architectures and functional zonation often cannot be revealed and localized due to the limited capacities of associating spatial information. We present RESEPT, a deep-learning framework for characterizing and visualizing tissue architecture from spatially resolved transcriptomics. Given inputs such as gene expression or RNA velocity, RESEPT learns a three-dimensional embedding with a spatial retained graph neural network from spatial transcriptomics. The embedding is then visualized by mapping into color channels in an RGB image and segmented with a supervised convolutional neural network model. Based on a benchmark of 10x Genomics Visium spatial transcriptomics datasets on the human and mouse cortex, RESEPT infers and visualizes the tissue architecture accurately. It is noteworthy that, for the in-house AD samples, RESEPT can localize cortex layers and cell types based on pre-defined region- or cell-type-enriched genes and furthermore provide critical insights into the identification of amyloid-beta plaques in Alzheimer's disease. Interestingly, in a glioblastoma sample analysis, RESEPT distinguishes tumor-enriched, non-tumor, and regions of neuropil with infiltrating tumor cells in support of clinical and prognostic cancer applications.Item Dimension-agnostic and granularity-based spatially variable gene identification(Research Square, 2023-03-22) Wang, Juexin; Li, Jinpu; Kramer, Skyler; Su, Li; Chang, Yuzhou; Xu, Chunhui; Ma, Qin; Xu, Dong; BioHealth Informatics, School of Informatics and ComputingIdentifying spatially variable genes (SVGs) is critical in linking molecular cell functions with tissue phenotypes. Spatially resolved transcriptomics captures cellular-level gene expression with corresponding spatial coordinates in two or three dimensions and can be used to infer SVGs effectively. However, current computational methods may not achieve reliable results and often cannot handle three-dimensional spatial transcriptomic data. Here we introduce BSP (big-small patch), a spatial granularity-guided and non-parametric model to identify SVGs from two or three-dimensional spatial transcriptomics data in a fast and robust manner. This new method has been extensively tested in simulations, demonstrating superior accuracy, robustness, and high efficiency. BSP is further validated by substantiated biological discoveries in cancer, neural science, rheumatoid arthritis, and kidney studies with various types of spatial transcriptomics technologies.Item Dimension-agnostic and granularity-based spatially variable gene identification using BSP(Springer Nature, 2023-11-14) Wang, Juexin; Li, Jinpu; Kramer, Skyler T.; Su, Li; Chang, Yuzhou; Xu, Chunhui; Eadon, Michael T.; Kiryluk, Krzysztof; Ma, Qin; Xu, Dong; Biomedical Engineering and Informatics, Luddy School of Informatics, Computing, and EngineeringIdentifying spatially variable genes (SVGs) is critical in linking molecular cell functions with tissue phenotypes. Spatially resolved transcriptomics captures cellular-level gene expression with corresponding spatial coordinates in two or three dimensions and can be used to infer SVGs effectively. However, current computational methods may not achieve reliable results and often cannot handle three-dimensional spatial transcriptomic data. Here we introduce BSP (big-small patch), a non-parametric model by comparing gene expression pattens at two spatial granularities to identify SVGs from two or three-dimensional spatial transcriptomics data in a fast and robust manner. This method has been extensively tested in simulations, demonstrating superior accuracy, robustness, and high efficiency. BSP is further validated by substantiated biological discoveries in cancer, neural science, rheumatoid arthritis, and kidney studies with various types of spatial transcriptomics technologies.Item IRIS-FGM: an integrative single-cell RNA-Seq interpretation system for functional gene module analysis(Oxford University Press, 2021) Chang, Yuzhou; Allen, Carter; Wan, Changlin; Chung, Dongjun; Zhang, Chi; Li, Zihai; Ma, Qin; Medical and Molecular Genetics, School of MedicineSummary: Single-cell RNA-Seq (scRNA-Seq) data is useful in discovering cell heterogeneity and signature genes in specific cell populations in cancer and other complex diseases. Specifically, the investigation of condition-specific functional gene modules (FGM) can help to understand interactive gene networks and complex biological processes in different cell clusters. QUBIC2 is recognized as one of the most efficient and effective biclustering tools for condition-specific FGM identification from scRNA-Seq data. However, its limited availability to a C implementation restricted its application to only a few downstream analysis functionalities. We developed an R package named IRIS-FGM (Integrative scRNA-Seq Interpretation System for Functional Gene Module analysis) to support the investigation of FGMs and cell clustering using scRNA-Seq data. Empowered by QUBIC2, IRIS-FGM can effectively identify condition-specific FGMs, predict cell types/clusters, uncover differentially expressed genes and perform pathway enrichment analysis. It is noteworthy that IRIS-FGM can also take Seurat objects as input, facilitating easy integration with the existing analysis pipeline. Availability and implementation: IRIS-FGM is implemented in the R environment (as of version 3.6) with the source code freely available at https://github.com/BMEngineeR/IRISFGM.Item IRIS3: integrated cell-type-specific regulon inference server from single-cell RNA-Seq(Oxford, 2020-05-18) Ma, Anjun; Wang, Cankun; Chang, Yuzhou; Brennan, Faith H; McDermaid, Adam; Liu, Bingqiang; Zhang, Chi; Popovich, Phillip G; Ma, Qin; Medical and Molecular Genetics, School of Medicinegroup of genes controlled as a unit, usually by the same repressor or activator gene, is known as a regulon. The ability to identify active regulons within a specific cell type, i.e., cell-type-specific regulons (CTSR), provides an extraordinary opportunity to pinpoint crucial regulators and target genes responsible for complex diseases. However, the identification of CTSRs from single-cell RNA-Seq (scRNA-Seq) data is computationally challenging. We introduce IRIS3, the first-of-its-kind web server for CTSR inference from scRNA-Seq data for human and mouse. IRIS3 is an easy-to-use server empowered by over 20 functionalities to support comprehensive interpretations and graphical visualizations of identified CTSRs. CTSR data can be used to reliably characterize and distinguish the corresponding cell type from others and can be combined with other computational or experimental analyses for biomedical studies. CTSRs can, therefore, aid in the discovery of major regulatory mechanisms and allow reliable constructions of global transcriptional regulation networks encoded in a specific cell type. The broader impact of IRIS3 includes, but is not limited to, investigation of complex diseases hierarchies and heterogeneity, causal gene regulatory network construction, and drug development.Item LTMG: a novel statistical modeling of transcriptional expression states in single-cell RNA-Seq data(Oxford University Press, 2019-10-10) Wan, Changlin; Chang, Wennan; Zhang, Yu; Shah, Fenil; Lu, Xiaoyu; Zang, Yong; Zhang, Anru; Cao, Sha; Fishel, Melissa L.; Ma, Qin; Zhang, Chi; Medical and Molecular Genetics, School of MedicineA key challenge in modeling single-cell RNA-seq data is to capture the diversity of gene expression states regulated by different transcriptional regulatory inputs across individual cells, which is further complicated by largely observed zero and low expressions. We developed a left truncated mixture Gaussian (LTMG) model, from the kinetic relationships of the transcriptional regulatory inputs, mRNA metabolism and abundance in single cells. LTMG infers the expression multi-modalities across single cells, meanwhile, the dropouts and low expressions are treated as left truncated. We demonstrated that LTMG has significantly better goodness of fitting on an extensive number of scRNA-seq data, comparing to three other state-of-the-art models. Our biological assumption of the low non-zero expressions, rationality of the multimodality setting, and the capability of LTMG in extracting expression states specific to cell types or functions, are validated on independent experimental data sets. A differential gene expression test and a co-regulation module identification method are further developed. We experimentally validated that our differential expression test has higher sensitivity and specificity, compared with other five popular methods. The co-regulation analysis is capable of retrieving gene co-regulation modules corresponding to perturbed transcriptional regulations. A user-friendly R package with all the analysis power is available at https://github.com/zy26/LTMGSCA.Item M3S: a comprehensive model selection for multi-modal single-cell RNA sequencing data(BMC, 2019-12-20) Zhang, Yu; Wan, Changlin; Wang, Pengcheng; Chang, Wennan; Huo, Yan; Chen, Jian; Ma, Qin; Cao, Sha; Zhang, Chi; Medical and Molecular Genetics, School of MedicineBackground Various statistical models have been developed to model the single cell RNA-seq expression profiles, capture its multimodality, and conduct differential gene expression test. However, for expression data generated by different experimental design and platforms, there is currently lack of capability to determine the most proper statistical model. Results We developed an R package, namely Multi-Modal Model Selection (M3S), for gene-wise selection of the most proper multi-modality statistical model and downstream analysis, useful in a single-cell or large scale bulk tissue transcriptomic data. M3S is featured with (1) gene-wise selection of the most parsimonious model among 11 most commonly utilized ones, that can best fit the expression distribution of the gene, (2) parameter estimation of a selected model, and (3) differential gene expression test based on the selected model. Conclusion A comprehensive evaluation suggested that M3S can accurately capture the multimodality on simulated and real single cell data. An open source package and is available through GitHub at https://github.com/zy26/M3S.Item Prediction of regulatory motifs from human Chip-sequencing data using a deep learning framework(Oxford University Press, 2019-09-05) Yang, Jinyu; Ma, Anjun; Hoppe, Adam D.; Wang, Cankun; Li, Yang; Zhang, Chi; Wang, Yan; Liu, Bingqiang; Ma, Qin; Medical and Molecular Genetics, School of MedicineThe identification of transcription factor binding sites and cis-regulatory motifs is a frontier whereupon the rules governing protein-DNA binding are being revealed. Here, we developed a new method (DEep Sequence and Shape mOtif or DESSO) for cis-regulatory motif prediction using deep neural networks and the binomial distribution model. DESSO outperformed existing tools, including DeepBind, in predicting motifs in 690 human ENCODE ChIP-sequencing datasets. Furthermore, the deep-learning framework of DESSO expanded motif discovery beyond the state-of-the-art by allowing the identification of known and new protein-protein-DNA tethering interactions in human transcription factors (TFs). Specifically, 61 putative tethering interactions were identified among the 100 TFs expressed in the K562 cell line. In this work, the power of DESSO was further expanded by integrating the detection of DNA shape features. We found that shape information has strong predictive power for TF-DNA binding and provides new putative shape motif information for human TFs. Thus, DESSO improves in the identification and structural analysis of TF binding sites, by integrating the complexities of DNA binding into a deep-learning framework.