- Browse by Author
Browsing by Author "Ma, Jing"
Now showing 1 - 10 of 19
Results Per Page
Sort Options
Item Aging exaggerates acute-on-chronic alcohol-induced liver injury in mice and humans by inhibiting neutrophilic sirtuin 1-C/EBPα-miRNA-223 axis(Wolters Kluwer, 2022) Ren, Ruixue; He, Yong; Ding, Dong; Cui, Aoyuan; Bao, Huarui; Ma, Jing; Hou, Xin; Li, Yu; Feng, Dechun; Li, Xiaoling; Liangpunsakul, Suthat; Gao, Bin; Wang, Hua; Medicine, School of MedicineBackground and aims: Aging exacerbates liver neutrophil infiltration and alcohol-associated liver disease (ALD) in mice and humans, but the underlying mechanisms remain obscure. This study aimed to examine the effect of aging and alcohol consumption on neutrophilic Sirtuin 1 (SIRT1) and microRNA-223 (miR-223), and their contribution to ALD pathogeneses. Approach and results: Young and aged myeloid-specific Sirt1 knockout mice were subjected to chronic-plus-binge ethanol feeding. Blood samples from healthy controls and patients with chronic alcohol drinking who presented with acute intoxication were analyzed. Neutrophilic Sirt1 and miR-223 expression were down-regulated in aged mice compared with young mice. Deletion of the Sirt1 gene in myeloid cells including neutrophils exacerbated chronic-plus-binge ethanol-induced liver injury and inflammation and down-regulated neutrophilic miR-223 expression. Immunoprecipitation experiments revealed that SIRT1 promoted C/EBPα deacetylation by directly interacting with C/EBPα, a key transcription factor that controls miR-223 biogenesis, and subsequently elevated miR-223 expression in neutrophils. Importantly, down-regulation of SIRT1 and miR-223 expression was also observed in circulating neutrophils from middle-aged and elderly subjects compared with those from young individuals. Chronic alcohol users with acute intoxication had a reduction in neutrophilic SIRT1 expression in young and middle-aged patients, with a greater reduction in the latter group. The neutrophilic SIRT1 expression correlated with neutrophilic miR-223 and serum alanine transaminase levels in those patients. Conclusions: Aging increases the susceptibility of alcohol-induced liver injury in mice and humans through the down-regulation of the neutrophilic SIRT1-C/EBPα-miR-223 axis, which could be a therapeutic target for the prevention and/or treatment of ALD.Item Alcohol-induced gut microbial reorganization and associated overproduction of phenylacetylglutamine promotes cardiovascular disease(Springer Nature, 2024-12-30) Li, Zhen; Gu, Min; Zaparte, Aline; Fu, Xiaoming; Mahen, Kala; Mrdjen, Marko; Li, Xinmin S.; Yang, Zhihong; Ma, Jing; Thoudam, Themis; Chandler, Kristina; Hesler, Maggie; Heathers, Laura; Gorse, Kiersten; Van, Thanh Trung; Wong, David; Gibson, Aaron M.; Wang, Zeneng; Taylor, Christopher M.; Quijada, Pearl; Makarewich, Catherine A.; Hazen, Stanley L.; Liangpunsakul, Suthat; Brown, J. Mark; Lefer, David J.; Welsh, David A.; Sharp, Thomas E., III; Medicine, School of MedicineThe mechanism(s) underlying gut microbial metabolite (GMM) contribution towards alcohol-mediated cardiovascular disease (CVD) is unknown. Herein we observe elevation in circulating phenylacetylglutamine (PAGln), a known CVD-associated GMM, in individuals living with alcohol use disorder. In a male murine binge-on-chronic alcohol model, we confirm gut microbial reorganization, elevation in PAGln levels, and the presence of cardiovascular pathophysiology. Fecal microbiota transplantation from pair-/alcohol-fed mice into naïve male mice demonstrates the transmissibility of PAGln production and the CVD phenotype. Independent of alcohol exposure, pharmacological-mediated increases in PAGln elicits direct cardiac and vascular dysfunction. PAGln induced hypercontractility and altered calcium cycling in isolated cardiomyocytes providing evidence of improper relaxation which corresponds to elevated filling pressures observed in vivo. Furthermore, PAGln directly induces vascular endothelial cell activation through induction of oxidative stress leading to endothelial cell dysfunction. We thus reveal that the alcohol-induced microbial reorganization and resultant GMM elevation, specifically PAGln, directly contributes to CVD.Item Cell-to-cell and organ-to-organ crosstalk in the pathogenesis of alcohol-associated liver disease(BMJ, 2024) Gao, Hui; Jiang, Yanchao; Zeng, Ge; Huda, Nazmul; Thoudam, Themis; Yang, Zhihong; Liangpunsakul, Suthat; Ma, Jing; Medicine, School of MedicineAlcohol-associated liver disease (ALD) is a growing global health concern and its prevalence and severity are increasing steadily. While bacterial endotoxin translocation into the portal circulation is a well-established key factor, recent evidence highlights the critical role of sterile inflammation, triggered by diverse stimuli, in alcohol-induced liver injury. This review provides a comprehensive analysis of the complex interactions within the hepatic microenvironment in ALD. It examines the contributions of both parenchymal cells, like hepatocytes, and non-parenchymal cells, such as hepatic stellate cells, Kupffer cells, neutrophils, and liver sinusoidal endothelial cells, in driving the progression of the disease. Additionally, we explored the involvement of key mediators, including cytokines, chemokines and inflammasomes, which regulate inflammatory responses and promote liver injury and fibrosis. A particular focus has been placed on extracellular vesicles (EVs) as essential mediators of intercellular communication both within and beyond the liver. These vesicles facilitate the transfer of signalling molecules, such as microRNAs and proteins, which modulate immune responses, fibrogenesis and lipid metabolism, thereby influencing disease progression. Moreover, we underscore the importance of organ-to-organ crosstalk, particularly in the gut-liver axis, where dysbiosis and increased intestinal permeability lead to microbial translocation, exacerbating hepatic inflammation. The adipose-liver axis is also highlighted, particularly the impact of adipokines and free fatty acids from adipose tissue on hepatic steatosis and inflammation in the context of alcohol consumption.Item Chronic-plus-binge alcohol intake induces production of proinflammatory mtDNA-enriched extracellular vesicles and steatohepatitis via ASK1/p38MAPKα-dependent mechanisms(American Society for Clinical Investigation, 2020-06-16) Ma, Jing; Cao, Haixia; Rodrigues, Robim M.; Xu, Mingjiang; Ren, Tianyi; He, Yong; Hwang, Seonghwan; Feng, Dechun; Ren, Ruixue; Yang, Peixin; Liangpunsakul, Suthat; Sun, Jian; Gao, Bin; Medicine, School of MedicineAlcohol-associated liver disease is a spectrum of liver disorders with histopathological changes ranging from simple steatosis to steatohepatitis, cirrhosis, and hepatocellular carcinoma. Recent data suggest that chronic-plus-binge ethanol intake induces steatohepatitis by promoting release by hepatocytes of proinflammatory mitochondrial DNA–enriched (mtDNA-enriched) extracellular vesicles (EVs). The aim of the present study was to investigate the role of the stress kinase apoptosis signal–regulating kinase 1 (ASK1) and p38 mitogen-activated protein kinase (p38) in chronic-plus-binge ethanol–induced steatohepatitis and mtDNA-enriched EV release. Microarray analysis revealed the greatest hepatic upregulation of metallothionein 1 and 2 (Mt1/2), which encode 2 of the most potent antioxidant proteins. Genetic deletion of the Mt1 and Mt2 genes aggravated ethanol-induced liver injury, as evidenced by elevation of serum ALT, neutrophil infiltration, oxidative stress, and ASK1/p38 activation in the liver. Inhibition or genetic deletion of Ask1 or p38 ameliorated ethanol-induced liver injury, inflammation, ROS levels, and expression of phagocytic oxidase and ER stress markers in the liver. In addition, inhibition of ASK1 or p38 also attenuated ethanol-induced mtDNA-enriched EV secretion from hepatocytes. Taken together, these findings indicate that induction of hepatic mtDNA-enriched EVs by ethanol is dependent on ASK1 and p38, thereby promoting alcoholic steatohepatitis.Item Distinct histopathological phenotypes of severe alcoholic hepatitis suggest different mechanisms driving liver injury and failure(American Society for Clinical Investigation, 2022) Ma, Jing; Guillot, Adrien; Yang, Zhihong; Mackowiak, Bryan; Hwang, Seonghwan; Park, Ogyi; Peiffer, Brandon J.; Ahmadi, Ali Reza; Melo, Luma; Kusumanchi, Praveen; Huda, Nazmul; Saxena, Romil; He, Yong; Guan, Yukun; Feng, Dechun; Sancho-Bru, Pau; Zang, Mengwei; MacGregor Cameron, Andrew; Bataller, Ramon; Tacke, Frank; Sun, Zhaoli; Liangpunsakul, Suthat; Gao, Bin; Pathology and Laboratory Medicine, School of MedicineIntrahepatic neutrophil infiltration has been implicated in severe alcoholic hepatitis (SAH) pathogenesis; however, the mechanism underlying neutrophil-induced injury in SAH remains obscure. This translational study aims to describe the patterns of intrahepatic neutrophil infiltration and its involvement in SAH pathogenesis. Immunohistochemistry analyses of explanted livers identified two SAH phenotypes despite a similar clinical presentation, one with high intrahepatic neutrophils (Neuhi), but low levels of CD8+ T cells, and vice versa. RNA-Seq analyses demonstrated that neutrophil cytosolic factor 1 (NCF1), a key factor in controlling neutrophilic ROS production, was upregulated and correlated with hepatic inflammation and disease progression. To study specifically the mechanisms related to Neuhi in AH patients and liver injury, we used the mouse model of chronic-plus-binge ethanol feeding and found that myeloid-specific deletion of the Ncf1 gene abolished ethanol-induced hepatic inflammation and steatosis. RNA-Seq analysis and the data from experimental models revealed that neutrophilic NCF1-dependent ROS promoted alcoholic hepatitis (AH) by inhibiting AMP-activated protein kinase (a key regulator of lipid metabolism) and microRNA-223 (a key antiinflammatory and antifibrotic microRNA). In conclusion, two distinct histopathological phenotypes based on liver immune phenotyping are observed in SAH patients, suggesting a separate mechanism driving liver injury and/or failure in these patients.Item Enhanced Ca2+-channeling complex formation at the ER-mitochondria interface underlies the pathogenesis of alcohol-associated liver disease(Springer Nature, 2023-03-27) Thoudam, Themis; Chanda, Dipanjan; Lee, Jung Yi; Jung, Min-Kyo; Sinam, Ibotombi Singh; Kim, Byung-Gyu; Park, Bo-Yoon; Kwon, Woong Hee; Kim, Hyo-Jeong; Kim, Myeongjin; Lim, Chae Won; Lee, Hoyul; Huh, Yang Hoon; Miller, Caroline A.; Saxena, Romil; Skill, Nicholas J.; Huda, Nazmul; Kusumanchi, Praveen; Ma, Jing; Yang, Zhihong; Kim, Min-Ji; Mun, Ji Young; Harris, Robert A.; Jeon, Jae-Han; Liangpunsakul, Suthat; Lee, In-Kyu; Pathology and Laboratory Medicine, School of MedicineCa2+ overload-induced mitochondrial dysfunction is considered as a major contributing factor in the pathogenesis of alcohol-associated liver disease (ALD). However, the initiating factors that drive mitochondrial Ca2+ accumulation in ALD remain elusive. Here, we demonstrate that an aberrant increase in hepatic GRP75-mediated mitochondria-associated ER membrane (MAM) Ca2+-channeling (MCC) complex formation promotes mitochondrial dysfunction in vitro and in male mouse model of ALD. Unbiased transcriptomic analysis reveals PDK4 as a prominently inducible MAM kinase in ALD. Analysis of human ALD cohorts further corroborate these findings. Additional mass spectrometry analysis unveils GRP75 as a downstream phosphorylation target of PDK4. Conversely, non-phosphorylatable GRP75 mutation or genetic ablation of PDK4 prevents alcohol-induced MCC complex formation and subsequent mitochondrial Ca2+ accumulation and dysfunction. Finally, ectopic induction of MAM formation reverses the protective effect of PDK4 deficiency in alcohol-induced liver injury. Together, our study defines a mediatory role of PDK4 in promoting mitochondrial dysfunction in ALD.Item Epidemiology of Alcohol-associated Liver Disease(Elsevier, 2021) Han, Sen; Yang, Zhihong; Zhang, Ting; Ma, Jing; Chandler, Kristina; Liangpunsakul, Suthat; Medicine, School of MedicineAlcohol-associated liver disease (ALD) is a consequence of excessive alcohol use. It comprises a spectrum of histopathologic changes ranging from simple steatosis, steatohepatitis, and cirrhosis to hepatocellular carcinoma. The public health impact of ALD is growing because of an increase in the prevalence and incidence of ALD in parallel with liver transplant and mortalities. There are multiple factors involved in the pathogenesis and progression of ALD. Reducing alcohol consumption is the cornerstone of ALD management. The efforts to reduce excessive alcohol use at the individual and population levels are urgently needed to prevent adverse outcomes from ALD.Item HMGB2 is a potential diagnostic marker and therapeutic target for liver fibrosis and cirrhosis(Wolters Kluwer, 2023-11-06) Huang, Yi; Liangpunsakul, Suthat; Rudraiah, Swetha; Ma, Jing; Keshipeddy, Santosh K.; Wright, Dennis; Costa, Antonio; Burgess, Diane; Zhang, Yuxia; Huda, Nazmul; Wang, Li; Yang, Zhihong; Medicine, School of MedicineBackground: High mobility group proteins 1 and 2 (HMGB1 and HMGB2) are 80% conserved in amino acid sequence. The function of HMGB1 in inflammation and fibrosis has been extensively characterized. However, an unaddressed central question is the role of HMGB2 on liver fibrosis. In this study, we provided convincing evidence that the HMGB2 expression was significantly upregulated in human liver fibrosis and cirrhosis, as well as in several mouse liver fibrosis models. Methods: The carbon tetrachloride (CCl4) induced liver fibrosis mouse model was used. AAV8-Hmgb2 was utilized to overexpress Hmgb2 in the liver, while Hmgb2-/- mice were used for loss of function experiments. The HMGB2 inhibitor inflachromene and liposome-shHMGB2 (lipo-shHMGB2) were employed for therapeutic intervention. Results: The serum HMGB2 levels were also markedly elevated in patients with liver fibrosis and cirrhosis. Deletion of Hmgb2 in Hmgb2-/- mice or inhibition of HMGB2 in mice using a small molecule ICM slowed the progression of CCl4-induced liver fibrosis despite constant HMGB1 expression. In contrast, AAV8-mediated overexpression of Hmgb2 enchanced CCl4-incuded liver fibrosis. Primary hepatic stellate cells (HSCs) isolated from Hmgb2-/- mice showed significantly impaired transdifferentiation and diminished activation of α-SMA, despite a modest induction of HMGB1 protein. RNA-seq analysis revealed the induction of top 45 CCl4-activated genes in multiple signaling pathways including integrin signaling and inflammation. The activation of these genes by CCl4 were abolished in Hmgb2-/- mice or in ICM-treated mice. These included C-X3-C motif chemokine receptor 1 (Cx3cr1) associated with inflammation, cyclin B (Ccnb) associated with cell cycle, DNA topoisomerase 2-alpha (Top2a) associated with intracellular component, and fibrillin (Fbn) and fibromodulin (Fmod) associated with extracellular matrix. Conclusion: We conclude that HMGB2 is indispensable for stellate cell activation. Therefore, HMGB2 may serve as a potential therapeutic target to prevent HSC activation during chronic liver injury. The blood HMGB2 level may also serve as a potential diagnostic marker to detect early stage of liver fibrosis and cirrhosis in humans.Item Interleukin-20 exacerbates acute hepatitis and bacterial infection by downregulating IκBζ target genes in hepatocytes(Elsevier, 2021) He, Yong; Feng, Dechun; Hwang, Seonghwan; Mackowiak, Bryan; Wang, Xiaolin; Xiang, Xiaogang; Rodrigues, Robim M.; Fu, Yaojie; Ma, Jing; Ren, Tianyi; Ait-Ahmed, Yeni; Xu, Mingjiang; Liangpunsakul, Suthat; Gao, Bin; Medicine, School of MedicineBackground & aims: Interleukin (IL)-20 and IL-22 belong to the IL-10 family. IL-10 is a well-documented anti-inflammatory cytokine while IL-22 is well known for epithelial protection and its antibacterial function, showing great therapeutic potential for organ damage; however, the function of IL-20 remains largely unknown. Methods: Il20 knockout (Il20-/-) mice and wild-type littermates were generated and injected with Concanavalin A (ConA) and Klebsiella pneumoniae (K.P.) to induce acute hepatitis and bacterial infection, respectively. Results: Il20-/- mice were resistant to acute hepatitis and exhibited selectively elevated levels of the hepatoprotective cytokine IL-6. Such selective inhibition of IL-6 by IL-20 was due to IL-20 targeting hepatocytes that produce high levels of IL-6 but a limited number of other cytokines. Mechanistically, IL-20 upregulated NAD(P)H: quinone oxidoreductase 1 (NQO1) expression and subsequently promoted the protein degradation of transcription factor IκBζ, resulting in selective downregulation of the IκBζ-dependent gene Il6 as well several other IκBζ-dependent genes including lipocalin-2 (Lcn2). Given the important role of IL-6 and LCN2 in limiting bacterial infection, we examined the effect of IL-20 on bacterial infection and found Il20-/- mice were resistant to K.P. infection and exhibited elevated levels of hepatic IκBζ-dependent antibacterial genes. Moreover, IL-20 upregulated hepatic NQO1 by binding to IL-22R1/IL-20R2 and activating ERK/p38MAPK/NRF2 signaling pathways. Finally, the levels of hepatic IL1B, IL20, and IκBζ target genes were elevated, and correlated with each other, in patients with severe alcoholic hepatitis. Conclusions: IL-20 selectively inhibits hepatic IL-6 production rather than exerting IL-10-like broad anti-inflammatory properties. Unlike IL-22, IL-20 aggravates acute hepatitis and bacterial infection. Thus, anti-IL-20 therapy could be a promising option to control acute hepatitis and bacterial infection. Lay summary: Several interleukin (IL)-20 family cytokines have been shown to play important roles in controllimg inflammatory responses, infection and tissue damage, but the role of IL-20 remains unclear. Herein, we elucidated the role of IL-20 in liver disease and bacterial infection. We show that IL-20 can aggravate hepatitis and bacterial infection; thus, targeting IL-20 holds promise for the treatment of patients with liver disease.Item Mitochondrial quality control in alcohol-associated liver disease(Wolters Kluwer, 2024-10-24) Thoudam, Themis; Gao, Hui; Jiang, Yanchao; Huda, Nazmul; Yang, Zhihong; Ma, Jing; Liangpunsakul, Suthat; Medicine, School of MedicineExcessive alcohol consumption is a leading cause of alcohol-associated liver disease (ALD), a significant global health concern with limited therapeutic options. Understanding the key factors contributing to ALD pathogenesis is crucial for identifying potential therapeutic targets. Central to ALD pathogenesis is the intricate interplay between alcohol metabolism and cellular processes, particularly involving mitochondria. Mitochondria are essential organelles in the liver, critical for energy production and metabolic functions. However, they are particularly vulnerable to alcohol-induced damage due to their involvement in alcohol metabolism. Alcohol disrupts mitochondrial function, impairing ATP production and triggering oxidative stress, which leads to cellular damage and inflammation. Mitochondrial quality control mechanisms, including biogenesis, dynamics, and mitophagy, are crucial for maintaining optimal mitochondrial function. Chronic alcohol consumption disrupts mitochondrial quality control checkpoints, leading to mitochondrial dysfunction that impairs fatty acid oxidation and contributes to hepatic steatosis in ALD. Moreover, alcohol promotes the accumulation of damaged mitochondria and the release of proinflammatory components, exacerbating liver damage and inflammation. Preserving mitochondrial health presents a promising therapeutic approach to mitigate ALD progression. In this review, we provide a comprehensive overview of the effects of alcohol on mitochondrial function and quality control mechanisms, highlighting their role in ALD pathogenesis. Understanding these mechanisms may pave the way for the development of novel therapeutic interventions for ALD.