- Browse by Author
Browsing by Author "Low, Philip S."
Now showing 1 - 6 of 6
Results Per Page
Sort Options
Item Assessment of folate receptor-β expression in human neoplastic tissues(Impact Journals, LLC, 2015-06-10) Shen, Jiayin; Putt, Karson S.; Visscher, Daniel W.; Murphy, Linda; Cohen, Cynthia; Singhal, Sunil; Sandusky, George; Feng, Yang; Dimitrov, Dimiter S.; Low, Philip S.; Department of Pathology & Laboratory Medicine, IU School of MedicineOver-expression of folate receptor alpha on cancer cells has been frequently exploited for delivery of folate-targeted imaging and therapeutic agents to tumors. Because limited information exists on expression of the beta isoform of the folate receptor in human cancers (FR-β), we have evaluated the immunohistochemical staining pattern of FR-β in 992 tumor sections from 20 different human cancer types using a new anti-human FR-β monoclonal antibody. FR-β expression was shown to be more pronounced in cells within the stroma, primarily macrophages and macrophage-like cells than cancer cells in every cancer type studied. Moreover, FR-β expression in both cancer and stromal cells was found to be statistically more prominent in females than males. A significant positive correlation was also observed between FR-β expression on stromal cells and both the stage of the cancer and the presence of lymph node metastases. Based on these data we conclude FR-β may constitute a good target for specific delivery of therapeutic agents to activated macrophages and that accumulation of FR-β positive macrophages in the stroma could serve as a useful indicator of a tumor's metastatic potential.Item Dysfunctional stem and progenitor cells impair fracture healing with age(Baishideng Publishing Group, 2019-06-26) Wagner, Diane R.; Karnik, Sonali; Gunderson, Zachary J.; Nielsen, Jeffery J.; Fennimore, Alanna; Promer, Hunter J.; Lowery, Jonathan W.; Loghmani, M. Terry; Low, Philip S.; McKinley, Todd O.; Kacena, Melissa A.; Clauss, Matthias; Li, Jiliang; Orthopaedic Surgery, IU School of MedicineSuccessful fracture healing requires the simultaneous regeneration of both the bone and vasculature; mesenchymal stem cells (MSCs) are directed to replace the bone tissue, while endothelial progenitor cells (EPCs) form the new vasculature that supplies blood to the fracture site. In the elderly, the healing process is slowed, partly due to decreased regenerative function of these stem and progenitor cells. MSCs from older individuals are impaired with regard to cell number, proliferative capacity, ability to migrate, and osteochondrogenic differentiation potential. The proliferation, migration and function of EPCs are also compromised with advanced age. Although the reasons for cellular dysfunction with age are complex and multidimensional, reduced expression of growth factors, accumulation of oxidative damage from reactive oxygen species, and altered signaling of the Sirtuin-1 pathway are contributing factors to aging at the cellular level of both MSCs and EPCs. Because of these geriatric-specific issues, effective treatment for fracture repair may require new therapeutic techniques to restore cellular function. Some suggested directions for potential treatments include cellular therapies, pharmacological agents, treatments targeting age-related molecular mechanisms, and physical therapeutics. Advanced age is the primary risk factor for a fracture, due to the low bone mass and inferior bone quality associated with aging; a better understanding of the dysfunctional behavior of the aging cell will provide a foundation for new treatments to decrease healing time and reduce the development of complications during the extended recovery from fracture healing in the elderly.Item Folate Receptor Beta Designates Immunosuppressive Tumor-Associated Myeloid Cells That Can Be Reprogrammed with Folate-Targeted Drugs(AACR, 2021-02) Cresswell, Gregory M.; Wang, Bingbing; Kischuk, Erin M.; Broman, Meaghan M.; Alfar, Rami A.; Vickman, Renee E.; Dimitrov, Dimiter S.; Kularatne, Sumith A.; Sundaram, Chandru P.; Singhal, Sunil; Eruslanov, Evgeniy B.; Crist, Scott A.; Elzey, Bennett D.; Ratliff, Timothy L.; Low, Philip S.; Urology, School of MedicineAlthough immunotherapies of tumors have demonstrated promise for altering the progression of malignancies, immunotherapies have been limited by an immunosuppressive tumor microenvironment (TME) that prevents infiltrating immune cells from performing their anticancer functions. Prominent among immunosuppressive cells are myeloid-derived suppressor cells (MDSC) and tumor-associated macrophages (TAM) that inhibit T cells via release of immunosuppressive cytokines and engagement of checkpoint receptors. Here, we explore the properties of MDSCs and TAMs from freshly isolated mouse and human tumors and find that an immunosuppressive subset of these cells can be distinguished from the nonimmunosuppressive population by its upregulation of folate receptor beta (FRβ) within the TME and its restriction to the TME. This FRβ+ subpopulation could be selectively targeted with folate-linked drugs. Delivery of a folate-targeted TLR7 agonist to these cells (i) reduced their immunosuppressive function, (ii) increased CD8+ T-cell infiltration, (iii) enhanced M1/M2 macrophage ratios, (iv) inhibited tumor growth, (v) blocked tumor metastasis, and (vi) improved overall survival without demonstrable toxicity. These data reveal a broadly applicable strategy across tumor types for reprogramming MDSCs and TAMs into antitumorigenic immune cells using a drug that would otherwise be too toxic to administer systemically. The data also establish FRβ as the first marker that distinguishes immunosuppressive from nonimmunosuppressive subsets of MDSCs and TAMs. Because all solid tumors accumulate MDSCs and TAMs, a general strategy to both identify and reprogram these cells should be broadly applied in the characterization and treatment of multiple tumors.Item Novel Use of Folate-Targeted Intraoperative Fluorescence, OTL38, in Robot-Assisted Laparoscopic Partial Nephrectomy: Report of the First Three Cases(Mary Ann Liebert, 2016) Shum, Cheuk Fan; Bahler, Clinton D.; Low, Philip S.; Ratliff, Timothy L.; Kheyfets, Steven V.; Natarajan, Jay P.; Sandusky, George E.; Sundaram, Chandru P.; Department of Urology, IU School of MedicinePartial nephrectomy is now the preferred surgical option for small renal tumors because it allows nephron preservation without compromising oncologic clearance. Its outcomes depend on the surgeon's ability to continuously identify the edges of the tumor during resection, thus leaving an adequate margin around the tumor without excessive removal of normal parenchyma, as well as keeping a short ischemic time. Folate receptors are highly abundant in the normal kidney, and there is a difference in folate receptor expression between malignant and normal renal tissues. Thus, the use of fluorescent agents that target folate receptors should result in differential fluorescence between the tumor and surrounding parenchyma during partial nephrectomy, which, in turn, helps tumor demarcation for identification and resection. A phase 2 study on the novel use of OTL38 in robot-assisted laparoscopic partial nephrectomy is currently in progress in our institution. The outcomes of the first three cases have shown the possible advantages of OTL38 in intraoperative tumor identification before resection and recognition of residual disease in the surrounding parenchyma after resection. The tumors typically appeared dark while the surrounding parenchyma showed brighter fluorescence. Immediately after tumor resection, the margins of all the specimens appeared to have a uniformly bright fluorescence, suggestive of an intact margin of normal renal parenchyma along the plane of excision. The pattern of intraoperative fluorescence correlates well with immunohistochemistry. No OTL38-related adverse effects have been seen among these three patients. We present the outcomes of these three cases, illustrated with intraoperative and immunohistochemistry images.Item Targeting of a Photosensitizer to the Mitochondrion Enhances the Potency of Photodynamic Therapy(American Chemical Society, 2018-06-30) Mahalingam, Sakkarapalayam M.; Ordaz, Josue D.; Low, Philip S.; Medicine, School of MedicinePhotodynamic therapy (PDT) involves use of a photosensitizer, whose activation with light leads to the production of singlet oxygen (SOS), generation of reactive oxygen species (ROS), and initiation of associated cell toxicity. Because a cell's mitochondria constitute sites where oxygen levels are high, ROS can be readily produced, and apoptosis is commonly initiated. Therefore, an ideal PDT agent might be a potent photosensitizer that could naturally accumulate in mitochondria. Although a number of mitochondria-targeting moieties, including triphenylphosphine, guanidinium, and bisguanidium, have been identified, a quantitative comparison of their efficacies in targeting mitochondria has not been performed. In this study, we have prepared triphenylphosphine, guanidinium, and bisguanidium derivatives of the FDA-approved PDT agent verteporfin (Visudyne, benzoporphyrin derivative-monoacid ring A: BPD-MA) and compared their abilities to induce the intracellular perturbations common to potent PDT agents. Cellular parameters examined included subcellular localization of the verteporfin, real-time monitoring of SOS production, quantitation of reactive oxygen species (ROS) generation, analysis of mitochondria and chromatin integrity, characterization of cytoskeletal disruption and evaluation of cytochrome C release as a measure of apoptosis. An analysis of these parameters demonstrates that the triphenylphosphine derivative (0323) has better mitochondria-targeting efficacy, SOS production, and mitochondria membrane toxicity than either unmodified verteporfin or its guanidinium derivatives. Consistent with this potency, 0323 also induced the most prominent mitochondria swelling, actin depolymerization, pyknosis, and cytochrome C release. We conclude that triphenylphosphine has a better mitochondria-targeting moiety than guanidinium or bis-guanidinium and those PDT photosensitizers with improved cytotoxicities can be prepared by conjugating a mitochondria-targeting moiety to the desired photosensitizer.Item Thrombopoietic agents enhance bone healing in mice, rats, and pigs(Oxford University Press, 2024) Childress, Paul J.; Nielsen, Jeffery J.; Bemenderfer, Thomas B.; Dadwal, Ushashi C.; Chakraborty, Nabarun; Harris, Jonathan S.; Bethel, Monique; Alvarez, Marta B.; Tucker, Aamir; Wessel, Alexander R.; Millikan, Patrick D.; Wilhite, Jonathan H.; Engle, Andrew; Brinker, Alexander; Rytlewski, Jeffrey D.; Scofield, David C.; Griffin, Kaitlyn S.; Shelley, W. Christopher; Manikowski, Kelli J.; Jackson, Krista L.; Miller, Stacy-Ann; Cheng, Ying-Hua; Ghosh, Joydeep; Mulcrone, Patrick L.; Srour, Edward F.; Yoder, Mervin C.; Natoli, Roman M.; Shively, Karl D.; Gautam, Aarti; Hammamieh, Rasha; Low, Stewart A.; Low, Philip S.; McKinley, Todd O.; Anglen, Jeffrey O.; Lowery, Jonathan W.; Chu, Tien-Min G.; Kacena, Melissa A.; Orthopaedic Surgery, School of MedicineAchieving bone union remains a significant clinical dilemma. The use of osteoinductive agents, specifically bone morphogenetic proteins (BMPs), has gained wide attention. However, multiple side effects, including increased incidence of cancer, have renewed interest in investigating alternatives that provide safer, yet effective bone regeneration. Here we demonstrate the robust bone healing capabilities of the main megakaryocyte (MK) growth factor, thrombopoietin (TPO), and second-generation TPO agents using multiple animal models, including mice, rats, and pigs. This bone healing activity is shown in two fracture models (critical-sized defect [CSD] and closed fracture) and with local or systemic administration. Our transcriptomic analyses, cellular studies, and protein arrays demonstrate that TPO enhances multiple cellular processes important to fracture healing, particularly angiogenesis, which is required for bone union. Finally, the therapeutic potential of thrombopoietic agents is high since they are used in the clinic for other indications (eg, thrombocytopenia) with established safety profiles and act upon a narrowly defined population of cells.