- Browse by Author
Browsing by Author "Loughran, Elizabeth"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Cdc42 overexpression induces hyperbranching in the developing mammary gland by enhancing cell migration(Springer Nature, 2013) Bray, Kristi; Gillette, Melissa; Young, Jeanette; Loughran, Elizabeth; Hwang, Melissa; Sears, James Cooper; Vargo-Gogola, Tracy; Biochemistry and Molecular Biology, School of MedicineIntroduction: The Rho GTPase Cdc42 is overexpressed and hyperactivated in breast tumors compared to normal breast tissue. Cdc42 regulates key processes that are critical for mammary gland morphogenesis and become disrupted during the development, progression, and metastasis of breast cancer. However, the contribution of Cdc42 to normal and neoplastic mammary gland development in vivo remains poorly understood. We were therefore interested in investigating the effects of Cdc42 overexpression on mammary gland morphogenesis as a first step toward understanding how its overexpression may contribute to mammary tumorigenesis. Methods: We developed a tetracycline-regulatable Cdc42 overexpression mouse model in which Cdc42 can be inducibly overexpressed in the developing mammary gland. The effects of Cdc42 overexpression during postnatal mammary gland development were investigated using in vivo and in vitro approaches, including morphometric analysis of wholemounted mammary glands, quantification of histological markers, and primary mammary epithelial cell (MEC) functional and biochemical assays. Results: Analysis of Cdc42-overexpressing mammary glands revealed abnormal terminal end bud (TEB) morphologies, characterized by hyperbudding and trifurcation, and increased side branching within the ductal tree. Quantification of markers of proliferation and apoptosis suggested that these phenotypes were not due to increased cell proliferation or survival. Rather, Cdc42 overexpressing MECs were more migratory and contractile and formed dysmorphic, invasive acini in three-dimensional cultures. Cdc42 and RhoA activities, phosphorylated myosin light chain, and MAPK signaling, which contribute to migration and invasion, were markedly elevated in Cdc42 overexpressing MECs. Interestingly, Cdc42 overexpressing mammary glands displayed several features associated with altered epithelial-stromal interactions, which are known to regulate branching morphogenesis. These included increased stromal thickness and collagen deposition, and stromal cells isolated from Cdc42 overexpressing mammary glands exhibited elevated mRNA expression of extracellular matrix proteins and remodeling enzymes. Conclusions: These data suggest that Cdc42 overexpression disrupts mammary gland branching morphogenesis by altering Rho GTPase and MAPK signaling, leading to increased MEC contractility and migration in association with stromal alterations. Our studies provide insight into how aberrant Cdc42 expression may contribute to mammary tumorigenesis.Item In vivo tumor growth of high-grade serous ovarian cancer cell lines(Elsevier, 2015-08) Mitra, Anirban; Davis, David A.; Tomar, Sunil; Roy, Lynn; Gurler, Hilal; Xie, Jia; Lantvit, Daniel D.; Cardenas, Horacio; Fang, Fang; Liu, Yueying; Loughran, Elizabeth; Yang, Jing; Stack, M. Sharon; Emerson, Robert E.; Dahl, Karen D. Cowden; Barbolina, Maria; Nephew, Kenneth P.; Matei, Daniela; Burdette, Joanna E.; Department of Medicine, IU School of MedicineOBJECTIVE: Genomic studies of ovarian cancer (OC) cell lines frequently used in research revealed that these cells do not fully represent high-grade serous ovarian cancer (HGSOC), the most common OC histologic type. However, OC lines that appear to genomically resemble HGSOC have not been extensively used and their growth characteristics in murine xenografts are essentially unknown. METHODS: To better understand growth patterns and characteristics of HGSOC cell lines in vivo, CAOV3, COV362, KURAMOCHI, NIH-OVCAR3, OVCAR4, OVCAR5, OVCAR8, OVSAHO, OVKATE, SNU119 and UWB1.289 cells were assessed for tumor formation in nude mice. Cells were injected intraperitoneally (i.p.) or subcutaneously (s.c.) in female athymic nude mice and allowed to grow (maximum of 90 days) and tumor formation was analyzed. All tumors were sectioned and assessed using H&E staining and immunohistochemistry for p53, PAX8 and WT1 expression. RESULTS: Six lines (OVCAR3, OVCAR4, OVCAR5, OVCAR8, CAOV3, and OVSAHO) formed i.p xenografts with HGSOC histology. OVKATE and COV362 formed s.c. tumors only. Rapid tumor formation was observed for OVCAR3, OVCAR5 and OVCAR8, but only OVCAR8 reliably formed ascites. Tumors derived from OVCAR3, OVCAR4, and OVKATE displayed papillary features. Of the 11 lines examined, three (Kuramochi, SNU119 and UWB1.289) were non-tumorigenic. CONCLUSIONS: Our findings help further define which HGSOC cell models reliably generate tumors and/or ascites, critical information for preclinical drug development, validating in vitro findings, imaging and prevention studies by the OC research community.Item Lysophosphatidic acid modulates ovarian cancer multicellular aggregate assembly and metastatic dissemination(Nature Publishing group, 2020-07-02) Klymenko, Yuliya; Bos, Brandi; Campbell, Leigh; Loughran, Elizabeth; Liu, Yueying; Yang, Jing; Kim, Oleg; Stack, M. Sharon; Obstetrics and Gynecology, School of MedicineEpithelial ovarian cancer (EOC) metastasis occurs by exfoliation of cells and multicellular aggregates (MCAs) from the tumor into the peritoneal cavity, adhesion to and retraction of peritoneal mesothelial cells and subsequent anchoring. Elevated levels of lysophosphatidic acid (LPA) have been linked to aberrant cell proliferation, oncogenesis, and metastasis. LPA disrupts junctional integrity and epithelial cohesion in vitro however, the fate of free-floating cells/MCAs and the response of host peritoneal tissues to LPA remain unclear. EOC MCAs displayed significant LPA-induced changes in surface ultrastructure with the loss of cell surface protrusions and poor aggregation, resulting in increased dissemination of small clusters compared to untreated control MCAs. LPA also diminished the adhesive capacity of EOC single cells and MCAs to murine peritoneal explants and impaired MCA survival and mesothelial clearance competence. Peritoneal tissues from healthy mice injected with LPA exhibited enhanced mesothelial surface microvilli. Ultrastructural alterations were associated with restricted peritoneal susceptibility to metastatic colonization by single cells as well as epithelial-type MCAs. The functional consequence is an LPA-induced dissemination of small mesenchymal-type clusters, promoting a miliary mode of peritoneal seeding that complicates surgical removal and is associated with worse prognosis.