- Browse by Author
Browsing by Author "Lopez, Kevin J."
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item Heterogeneity of Hepatic Stellate Cells in Fibrogenesis of the Liver: Insights from Single-Cell Transcriptomic Analysis in Liver Injury(MDPI, 2021-08-19) Zhang, Wenjun; Conway, Simon J.; Liu, Ying; Snider, Paige; Chen, Hanying; Gao, Hongyu; Liu, Yunlong; Isidan, Kadir; Lopez, Kevin J.; Campana, Gonzalo; Li, Ping; Ekser, Burcin; Francis, Heather; Shou, Weinian; Kubal, Chandrashekhar; Pediatrics, School of MedicineBackground & Aims: Liver fibrosis is a pathological healing process resulting from hepatic stellate cell (HSC) activation and the generation of myofibroblasts from activated HSCs. The precise underlying mechanisms of liver fibrogenesis are still largely vague due to lack of understanding the functional heterogeneity of activated HSCs during liver injury. Approach and Results: In this study, to define the mechanism of HSC activation, we performed the transcriptomic analysis at single-cell resolution (scRNA-seq) on HSCs in mice treated with carbon tetrachloride (CCl4). By employing LRAT-Cre:Rosa26mT/mG mice, we were able to isolate an activated GFP-positive HSC lineage derived cell population by fluorescence-activated cell sorter (FACS). A total of 8 HSC subpopulations were identified based on an unsupervised analysis. Each HSC cluster displayed a unique transcriptomic profile, despite all clusters expressing common mouse HSC marker genes. We demonstrated that one of the HSC subpopulations expressed high levels of mitosis regulatory genes, velocity, and monocle analysis indicated that these HSCs are at transitioning and proliferating phases at the beginning of HSCs activation and will eventually give rise to several other HSC subtypes. We also demonstrated cell clusters representing HSC-derived mature myofibroblast populations that express myofibroblasts hallmark genes with unique contractile properties. Most importantly, we found a novel HSC cluster that is likely to be critical in liver regeneration, immune reaction, and vascular remodeling, in which the unique profiles of genes such as Rgs5, Angptl6, and Meg3 are highly expressed. Lastly, we demonstrated that the heterogeneity of HSCs in the injured mouse livers is closely similar to that of cirrhotic human livers. Conclusions: Collectively, our scRNA-seq data provided insight into the landscape of activated HSC populations and the dynamic transitional pathway from HSC to myofibroblasts in response to liver injury.Item Mucinous Cystic Neoplasms of the Liver: Epidemiology, Diagnosis, and Management(Dove Press, 2023-03-29) Hutchens, Jeffrey A.; Lopez, Kevin J.; Ceppa, Eugene P.; Surgery, School of MedicineMucinous cystic neoplasms (MCNs) are rare tumors of the liver, occasionally seen in the biliary tree. Epidemiologic data are limited by their indolence and recent changes to diagnostic criteria. They are considered premalignant lesions capable of invasive behavior. While their etiology remains unknown, their female predominance, age of onset, and hormonally responsive ovarian-type stroma suggest ectopic organogenesis during embryologic development. MCNs can typically be recognized on imaging; yet, invasiveness is often indeterminate, and percutaneous tissue biopsy has shown limited value. Therefore, complete excision is recommended for all lesions as focal malignant transformation and metastatic disease has been reported.Item Porcine UL-16 Binding Protein 1 Is Not a Functional Ligand for the Human Natural Killer Cell Activating Receptor NKG2D(MDPI, 2023-11-07) Lopez, Kevin J.; Spence, John Paul; Li, Wei; Zhang, Wenjun; Wei, Barry; Cross-Najafi, Arthur A.; Butler, James R.; Cooper, David K. C.; Ekser, Burcin; Li, Ping; Surgery, School of MedicineNatural killer (NK) cells play a vital role in xenotransplantation rejection. One approach to induce NK cell immune tolerance is to prevent the NK cell-mediated direct killing of porcine cells by targeting the interaction of the activating receptor NKG2D and its ligands. However, the identity of porcine ligands for the human NKG2D receptor has remained elusive. Previous studies on porcine UL-16 binding protein 1 (pULBP-1) as a ligand for human NKG2D have yielded contradictory results. The goal of the present study was to clarify the role of pULBP-1 in the immune response and its interaction with human NKG2D receptor. To accomplish this, the CRISPR/Cas9 gene editing tool was employed to disrupt the porcine ULBP-1 gene in a 5-gene knockout porcine endothelial cell line (GGTA1, CMAH, β4galNT2, SLA-I α chain, and β-2 microglobulin, 5GKO). A colony with two allele mutations in pULBP-1 was established as a 6-gene knockout pig cell line (6GKO). We found that pULBP-1-deficient pig cells exhibited a reduced binding capacity to human NKG2D-Fc, a recombinant chimera protein. However, the removal of ULBP-1 from porcine endothelial cells did not significantly impact human NK cell degranulation or cytotoxicity upon stimulation with the pig cells. These findings conclusively demonstrate that pULBP-1 is not a crucial ligand for initiating xenogeneic human NK cell activation.Item Strategies to induce natural killer cell tolerance in xenotransplantation(Frontiers Media, 2022-08-22) Lopez, Kevin J.; Cross-Najafi, Arthur A.; Farag, Kristine; Obando, Benjamin; Thadasina, Deepthi; Isidan, Abdulkadir; Park, Yujin; Zhang, Wenjun; Ekser, Burcin; Li, Ping; Surgery, School of MedicineEliminating major xenoantigens in pig cells has drastically reduced human antibody-mediated hyperacute xenograft rejection (HXR). Despite these advancements, acute xenograft rejection (AXR) remains one of the major obstacles to clinical xenotransplantation, mediated by innate immune cells, including macrophages, neutrophils, and natural killer (NK) cells. NK cells play an ‘effector’ role by releasing cytotoxicity granules against xenogeneic cells and an ‘affecter’ role on other immune cells through cytokine secretion. We highlight the key receptor-ligand interactions that determine the NK cell response to target cells, focusing on the regulation of NK cell activating receptor (NKG2D, DNAM1) and inhibitory receptor (KIR2DL1-4, NKG2A, and LIR-1) signaling pathways. Inhibition of NK cell activity may protect xenografts from cytotoxicity. Recent successful approaches to reducing NK cell-mediated HXR and AXR are reviewed, including genetic modifications of porcine xenografts aimed at improving pig-to-human compatibility. Future directions to promote xenograft acceptance are discussed, including NK cell tolerance in pregnancy and NK cell evasion in viral infection.