- Browse by Author
Browsing by Author "Liu, Yang"
Now showing 1 - 10 of 14
Results Per Page
Sort Options
Item Author Correction: Inhibitory effects of dopamine receptor D1 agonist on mammary tumor and bone metastasis(Springer Nature, 2022-11-03) Minami, Kazumasa; Liu, Shengzhi; Liu, Yang; Chen, Andy; Wan, Qiaoqiao; Na, Sungsoo; Li, Bai‑Yan; Matsuura, Nariaki; Koizumi, Masahiko; Yin, Yukun; Gan, Liangying; Xu, Aihua; Li, Jiliang; Nakshatri, Harikrishna; Yokota, Hiroki; Biomedical Engineering, School of Engineering and TechnologyThis corrects the article "Inhibitory Effects of Dopamine Receptor D1 Agonist on Mammary Tumor and Bone Metastasis" in volume 7, 45686. doi: 10.1038/srep45686Item Contribution of Baroreflex Afferent Pathway to NPY-Mediated Regulation of Blood Pressure in Rats(Springer, 2020-04) Liu, Yang; Zhao, Shu-Yang; Feng, Yan; Sun, Jie; Lu, Xiao-Long; Yan, Qiu-Xin; Li, Ying; Liu, Zhuo; Wang, Lu-Qi; Sun, Xun; Li, Shijun; Qiao, Guo-Fen; Li, Bai-Yan; Pediatrics, School of MedicineNeuropeptide Y (NPY), a metabolism-related cardiovascular factor, plays a crucial role in blood pressure (BP) regulation via peripheral and central pathways. The expression of NPY receptors (Y1R/Y2R) specific to baroreflex afferents impacts on the sexually dimorphic neural control of circulation. This study was designed to investigate the expression profiles of NPY receptors in the nodose ganglion (NG) and nucleus tractus solitary (NTS) under hypertensive conditions. To this end, rats with hypertension induced by NG-nitro-L-arginine methylester (L-NAME) or high fructose drinking (HFD), and spontaneously hypertensive rats (SHRs) were used to explore the effects/mechanisms of NPY on BP using functional, molecular, and electrophysiological approaches. The data showed that BP was elevated along with baroreceptor sensitivity dysfunction in model rats; Y1R was up- or down-regulated in the NG or NTS of male and female HFD/L-NAME groups, while Y2R was only down-regulated in the HFD groups as well as in the NG of the male L-NAME group. In SHRs, Y1R and Y2R were both down-regulated in the NTS, and not in the NG. In addition to NPY-mediated energy homeostasis, leptin-melanocortin activation may be essential for metabolic disturbance-related hypertension. We found that leptin and α-melanocyte stimulating hormone (α-MSH) receptors were aberrantly down-regulated in HFD rats. In addition, α-MSH concentrations were reduced and NPY concentrations were elevated in the serum and NTS at 60 and 90 min after acute leptin infusion. Electrophysiological recordings showed that the decay time-constant and area under the curve of excitatory post-synaptic currents were decreased by Y1R activation in A-types, whereas, both were increased by Y2R activation in Ah- or C-types. These results demonstrate that sex- and afferent-specific NPY receptor expression in the baroreflex afferent pathway is likely to be a novel target for the clinical management of metabolism-related and essential hypertension.Item Dihydrotestosterone suppression of proinflammatory gene expression in human meibomian gland epithelial cells(Elsevier, 2020-04) Sahin, Afsun; Liu, Yang; Kam, Wendy R.; Darabad, Raheleh Rahimi; Sullivan, David A.; Medicine, School of MedicinePurpose: We discovered that dihydrotestosterone (DHT) decreases the ability of lipopolysaccharide, a bacterial toxin, to stimulate the secretion of leukotriene B4, a potent proinflammatory mediator, by immortalized human meibomian gland epithelial cells (IHMGECs). We hypothesize that this hormone action reflects an androgen suppression of proinflammatory gene activity in these cells. Our goal was to test this hypothesis. For comparison, we also examined whether DHT treatment elicits the same effect in immortalized human corneal (IHC) and conjunctival (IHConj) ECs. Methods: Differentiated cells were cultured in media containing vehicle or 10 nM DHT. Cells (n = 3 wells/treatment group) were then processed for RNA isolation and the analysis of gene expression by using Illumina BeadChips, background subtraction, cubic spline normalization and Geospiza software. Results: Our results demonstrate that DHT significantly suppressed the expression of numerous immune-related genes in HMGECs, such as those associated with antigen processing and presentation, innate and adaptive immune responses, chemotaxis, and cytokine production. DHT also enhanced the expression of genes for defensin β1, IL-1 receptor antagonist, and the anti-inflammatory serine peptidase inhibitor, Kazal type 5. In contrast, DHT had no effect on proinflammatory gene expression in HCECs, and significantly increased 33 gene ontologies linked to the immune system in HConjECs. Conclusions: Our findings support our hypothesis that androgens suppress proinflammatory gene expression in IHMGECs. This hormone effect may contribute to the typical absence of inflammation within the human meibomian gland.Item The Ex Vivo Human Translaminar Autonomous System to Study Spaceflight Associated Neuro-ocular Syndrome Pathogenesis(Nature, 2022-10) Peng, Michael; Curry, Stacy M.; Liu, Yang; Lohawala, Husain; Sharma, Gaurav; Sharma, Tasneem P.; Ophthalmology, School of MedicineSpaceflight-Associated Neuro-ocular Syndrome (SANS) is a significant unexplained adverse reaction to long-duration spaceflight. We employ an ex vivo translaminar autonomous system (TAS) to recreate a human ocular ground-based spaceflight analogue model to study SANS pathogenesis. To recapitulate the human SANS conditions, human ocular posterior segments are cultured in the TAS model for 14 days. Translaminar pressure differentials are generated by simulating various flow rates within intracranial pressure (ICP) and intraocular (IOP) chambers to maintain hydrostatic pressures of ICP: IOP (12:16, 15:16, 12:21, 21:16 mmHg). In addition, optic nerves are mechanically kinked by 6- and 10-degree tilt inserts for the ICP: IOP;15:16 mmHg pressure paradigm. The TAS model successfully maintains various pressure differentials for all experimental groups over 14 days. Post culture, we determine inflammatory and extracellular component expression changes within posterior segments. To further characterize the SANS pathogenesis, axonal transport capacity, optic nerve degeneration and retinal functional are measured. Identifiable pathogenic alterations are observed in posterior segments by morphologic, apoptotic, and inflammatory changes including transport and functional deficits under various simulated SANS conditions. Here we report our TAS model provides a unique preclinical application system to mimic SANS pathology and a viable therapeutic testing device for countermeasures.Item FGF21 ameliorates the neurocontrol of blood pressure in the high fructose-drinking rats(Nature Publishing Group, 2016-07-08) He, Jian-Li; Zhao, Miao; Xia, Jing-Jun; Guan, Jian; Liu, Yang; Wang, Lu-Qi; Song, Dong-Xue; Qu, Mei-Yu; Zuo, Meng; Wen, Xin; Yu, Xue; Huo, Rong; Pan, Zhen-Wei; Ban, Tao; Zhang, Yan; Zhu, Jiu-Xin; Shou, Weinian; Qiao, Guo-Fen; Li, Bai-Yan; Department of Pediatrics, IU School of MedicineFibroblast growth factor-21 (FGF21) is closely related to various metabolic and cardiovascular disorders. However, the direct targets and mechanisms linking FGF21 to blood pressure control and hypertension are still elusive. Here we demonstrated a novel regulatory function of FGF21 in the baroreflex afferent pathway (the nucleus tractus solitarii, NTS; nodose ganglion, NG). As the critical co-receptor of FGF21, β-klotho (klb) significantly expressed on the NTS and NG. Furthermore, we evaluated the beneficial effects of chronic intraperitoneal infusion of recombinant human FGF21 (rhFGF21) on the dysregulated systolic blood pressure, cardiac parameters, baroreflex sensitivity (BRS) and hyperinsulinemia in the high fructose-drinking (HFD) rats. The BRS up-regulation is associated with Akt-eNOS-NO signaling activation in the NTS and NG induced by acute intravenous rhFGF21 administration in HFD and control rats. Moreover, the expressions of FGF21 receptors were aberrantly down-regulated in HFD rats. In addition, the up-regulated peroxisome proliferator-activated receptor-γ and -α (PPAR-γ/-α) in the NTS and NG in HFD rats were markedly reversed by chronic rhFGF21 infusion. Our study extends the work of the FGF21 actions on the neurocontrol of blood pressure regulations through baroreflex afferent pathway in HFD rats.Item Increase in neuroexcitability of unmyelinated C-type vagal ganglion neurons during initial postnatal development of visceral afferent reflex functions(Wiley, 2013-12) Qian, Zhao; Liu, Dong‐Jie; Liu, Yang; Han, Li‐Min; Yuan, Mei; Li, Jun‐Nan; Xu, Bing; Lu, Xiao‐Long; Cao, Pan‐Xiang; Wang, Hao‐Yan; Pan, Xiao‐Dong; Wang, Li‐Juan; Qiao, Guo‐Fen; Li, Bai‐Yan; Biology, School of ScienceBACKGROUND: Baroreflex gain increase up closely to adult level during initial postnatal weeks, and any interruption within this period will increase the risk of cardiovascular problems in later of life span. We hypothesize that this short period after birth might be critical for postnatal development of vagal ganglion neurons (VGNs). METHODS: To evaluate neuroexcitability evidenced by discharge profiles and coordinate changes, ion currents were collected from identified A- and C-type VGNs at different developmental stages using whole-cell patch clamping. RESULTS: C-type VGNs underwent significant age-dependent transition from single action potential (AP) to repetitive discharge. The coordinate changes between TTX-S and TTX-R Na(+) currents were also confirmed and well simulated by computer modeling. Although 4-AP or iberiotoxin age dependently increased firing frequency, AP duration was prolonged in an opposite fashion, which paralleled well with postnatal changes in 4-AP- and iberiotoxin-sensitive K(+) current activity, whereas less developmental changes were verified in A-types. CONCLUSION: These data demonstrate for the first time that the neuroexcitability of C-type VGNs increases significantly compared with A-types within initial postnatal weeks evidenced by AP discharge profiles and coordinate ion channel changes, which explain, at least in part, that initial postnatal weeks may be crucial for ontogenesis in visceral afferent reflex function.Item Influence of lipopolysaccharide on proinflammatory gene expression in human corneal, conjunctival and meibomian gland epithelial cells(Elsevier, 2018-07) Chen, Di; Sahin, Afsun; Kam, Wendy R.; Liu, Yang; Darabad, Raheleh Rahimi; Sullivan, David A.; Anesthesia, School of MedicinePURPOSE: Lipopolysaccharide (LPS), a bacterial endotoxin, is known to stimulate leuokotriene B4 (LTB4) secretion by human corneal (HCECs), conjunctival (HConjECs) and meibomian gland (HMGECs) epithelial cells. We hypothesize that this LTB4 effect represents an overall induction of proinflammatory gene expression in these cells. Our objective was to test this hypothesis. METHODS: Immortalized HCECs, HConjECs and HMGECs were cultured in the presence or absence of LPS (15 μg/ml) and ligand binding protein (LBP; 150 ng/ml). Cells were then processed for RNA isolation and the analysis of gene expression by using Illumina BeadChips, background subtraction, cubic spline normalization and GeneSifter software. RESULTS: Our findings show that LPS induces a striking increase in proinflammatory gene expression in HCECs and HConjECs. These cellular reactions are associated with a significant up-regulation of genes associated with inflammatory and immune responses (e.g. IL-1β, IL-8, and tumor necrosis factor), including those related to chemokine and Toll-like receptor signaling pathways, cytokine-cytokine receptor interactions, and chemotaxis. In contrast, with the exception of Toll-like signaling and associated innate immunity pathways, almost no proinflammatory ontologies were upregulated by LPS in HMGECs. CONCLUSIONS: Our results support our hypothesis that LPS stimulates proinflammatory gene expression in HCECs and HConjECs. However, our findings also show that LPS does not elicit such proinflammatory responses in HMGECs.Item Inhibiting checkpoint kinase 1 protects bone from bone resorption by mammary tumor in a mouse model(Impact Journals, 2018-01-19) Liu, Shengzhi; Liu, Yang; Minami, Kazumasa; Chen, Andy; Wan, Qiaoqiao; Yin, Yukun; Gan, Liangying; Xu, Aihua; Matsuura, Nariaki; Koizumi, Masahiko; Liu, Yunlong; Na, Sungsoo; Li, Jiliang; Nakshatri, Harikrishna; Li, Bai-Yan; Yokota, Hiroki; Biomedical Engineering, School of Engineering and TechnologyDNA damage response plays a critical role in tumor growth, but little is known about its potential role in bone metabolism. We employed selective inhibitors of Chk1 and examined their effects on the proliferation and migration of mammary tumor cells as well as the development of osteoblasts and osteoclasts. Further, using a mouse model of bone metastasis we evaluated the effects of Chk1 inhibitors on bone quality. Chk1 inhibitors blocked the proliferation, survival, and migration of tumor cells in vitro and suppressed the development of bone-resorbing osteoclasts by downregulating NFATc1. In the mouse model, Chk1 inhibitor reduced osteolytic lesions and prevented mechanical weakening of the femur and tibia. Analysis of RNA-seq expression data indicated that the observed effects were mediated through the regulation of eukaryotic translation initiation factor 2 alpha, stress to the endoplasmic reticulum, S100 proteins, and bone remodeling-linked genes. Our findings suggest that targeting Chk1 signaling without adding DNA damaging agents may protect bone from degradation while suppressing tumor growth and migration.Item Inhibitory Effects of Dopamine Receptor D1 Agonist on Mammary Tumor and Bone Metastasis(Springer NPG, 2017-03-04) Minami, Kazumasa; Liu, Shengzhi; Liu, Yang; Chen, Andy; Wan, Qiaoqiao; Na, Sungsoo; Li, Bai-Yan; Matsuura, Nariaki; Koizumi, Masahiko; Yin, Yukun; Gan, Liangying; Xu, Aihua; Li, Jiliang; Nakshatri, Harikrishna; Yokota, Hiroki; Biomedical Engineering, School of Engineering and TechnologyDopaminergic signaling plays a critical role in the nervous system, but little is known about its potential role in breast cancer and bone metabolism. A screening of ~1,000 biologically active compounds revealed that a selective agonist of dopamine receptor D1 (DRD1), A77636, inhibited proliferation of 4T1.2 mammary tumor cells as well as MDA-MB-231 breast cancer cells. Herein, we examined the effect of A77636 on bone quality using a mouse model of bone metastasis from mammary tumor. A77636 inhibited migration of cancer cells in a DRD1-dependent fashion and suppressed development of bone-resorbing osteoclasts by downregulating NFATc1 through the elevation of phosphorylation of eIF2α. In the mouse model of bone metastasis, A77636 reduced osteolytic lesions and prevented mechanical weakening of the femur and tibia. Collectively, we expect that dopaminergic signaling might provide a novel therapeutic target for breast cancer and bone metastasis.Item Neuropeptide Y-mediated sex- and afferent-specific neurotransmissions contribute to sexual dimorphism of baroreflex afferent function(Impact Journals, 2016-10-04) Liu, Yang; Wu, Di; Qu, Mei-Yu; He, Jian-Li; Yuan, Mei; Zhao, Miao; Wang, Jian-Xin; He, Jian; Wang, Lu-Qi; Guo, Xin-Jing; Zuo, Meng; Zhao, Shu-Yang; Ma, Mei-Na; Li, Jun-Nan; Shou, Weinian; Qiao, Guo-Fen; Li, Bai-Yan; Department of Pediatrics, IU School of MedicineBACKGROUND: Molecular and cellular mechanisms of neuropeptide-Y (NPY)-mediated gender-difference in blood pressure (BP) regulation are largely unknown. METHODS: Baroreceptor sensitivity (BRS) was evaluated by measuring the response of BP to phenylephrine/nitroprusside. Serum NPY concentration was determined using ELISA. The mRNA and protein expression of NPY receptors were assessed in tissue and single-cell by RT-PCR, immunoblot, and immunohistochemistry. NPY was injected into the nodose while arterial pressure was monitored. Electrophysiological recordings were performed on nodose neurons from rats by patch-clamp technique. RESULTS: The BRS was higher in female than male and ovariectomized rats, while serum NPY concentration was similar among groups. The sex-difference was detected in Y1R, not Y2R protein expression, however, both were upregulated upon ovariectomy and canceled by estrogen replacement. Immunostaining confirmed Y1R and Y2R expression in myelinated and unmyelinated afferents. Single-cell PCR demonstrated that Y1R expression/distribution was identical between A- and C-types, whereas, expressed level of Y2R was ~15 and ~7 folds higher in Ah- and C-types than A-types despite similar distribution. Activation of Y1R in nodose elevated BP, while activation of Y2R did the opposite. Activation of Y1R did not alter action potential duration (APD) of A-types, but activation of Y2R- and Y1R/Y2R in Ah- and C-types frequency-dependently prolonged APD. N-type ICa was reduced in A-, Ah- and C-types when either Y1R, Y2R, or both were activated. The sex-difference in Y1R expression was also observed in NTS. CONCLUSIONS: Sex- and afferent-specific expression of Neuropeptide-Y receptors in baroreflex afferent pathway may contribute to sexual-dimorphic neurocontrol of BP regulation.