- Browse by Author
Browsing by Author "Liu, Qiang"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item Borrelia burgdorferi Secretes c-di-AMP as an Extracellular Pathogen-Associated Molecular Pattern to Elicit Type I Interferon Responses in Mammalian Hosts(bioRxiv, 2024-08-20) Priya, Raj; Ye, Meiping; Raghunanadanan, Sajith; Liu, Qiang; Li, Wei; Lou, Yongliang; Sintim, Herman O.; Yang, X. Frank; Microbiology and Immunology, School of MedicineBorrelia burgdorferi (B. burgdorferi), an extracellular spirochetal pathogen, elicits a type-I interferon (IFN-I) response that contributes to the pathology of Lyme disease, including the development and severity of Lyme arthritis. However, the specific Pathogen-Associated Molecular Patterns (PAMPs) of B. burgdorferi responsible for triggering the IFN-I response are not well understood. Previous studies have identified an unknown, nuclease-resistant component in B. burgdorferi culture supernatants that significantly stimulates the IFN-I response, but its identity remains unknown. In this study, we reveal that B. burgdorferi secretes cyclic-di-adenosine monophosphate (c-di-AMP) as a key extracellular PAMP, inducing the host IFN-I response in macrophages. Using genetically manipulated B. burgdorferi strains, we demonstrate a requirement of c-di-AMP for stimulating IFN-I response by macrophages ex vivo. Additionally, infecting mice with B. burgdorferi alongside exogenous c-di-AMP resulted in a markedly increased IFN-I response in mouse tissues. Furthermore, inactivation or inhibition of the host STING signaling pathway significantly reduced the IFN-I response, indicating that c-di-AMP-induced IFN-I production is STING-dependent. Our findings identify c-di-AMP as a crucial PAMP secreted by B. burgdorferi to elicit the host IFN-I response via activation of STING signaling pathway, suggesting that targeting c-di-AMP production could represent a novel therapeutic strategy against Lyme arthritis.Item Corrigendum: Role of HK2 in the Enzootic Cycle of Borrelia burgdorferi(Frontiers Media, 2021-03-31) Liu, Qiang; Xu, Haijun; Zhang, Yan; Yang, Jing; Du, Jimei; Zhou, Yan; Yang, X. Frank; Lou, Yongliang; Microbiology and Immunology, School of MedicineItem Role of HK2 in the Enzootic Cycle of Borrelia burgdorferi(Frontiers, 2020-10-26) Liu, Qiang; Xu, Haijun; Zhang, Yan; Yang, Jing; Du, Jimei; Zhou, Yan; Yang, X. Frank; Lou, Yongliang; Microbiology and Immunology, School of MedicineThe two-component response regulator Rrp2 is a key activator controlling the production of numerous virulence factors of Borrelia burgdorferi, the Lyme disease pathogen. Previously it was shown that the cognate histidine kinase HK2 is not required for Rrp2 activation in vitro, nor for mammalian infection upon needle inoculation, raising the question whether HK2 has any role in the enzootic cycle of B. burgdorferi. In this study, we demonstrated that HK2 is not required for spirochetal survival in the tick vector. When fed on naive mice, the hk2 mutant had reduced infectivity through the route of tick bite, suggesting that the spirochetes lacking HK2 had a disadvantage in the enzootic cycle. Furthermore, overexpression of hk2 reduced the level of Rrp2 phosphorylation, suggesting that HK2 can function as a phosphatase to dephosphorylate Rrp2. Strains overexpressing hk2 impaired the expression of RpoN regulon whose activation is dependent on Rrp2 phosphorylation and activation, and had reduced infectivity in mice. Taken together, these results demonstrate that although HK2 does not play an essential role in Rrp2 activation, it is important for the optimal fitness of B. burgdorferi in the enzootic cycle.Item YebC regulates variable surface antigen VlsE expression and is required for host immune evasion in Borrelia burgdorferi(Public Library of Science, 2020-10-13) Zhang, Yan; Chen, Tong; Raghunandanan, Sajith; Xiang, Xuwu; Yang, Jing; Liu, Qiang; Edmondson, Diane G.; Norris, Steven J.; Yang, X. Frank; Lou, Yongliang; Microbiology and Immunology, School of MedicineBorrelia burgdorferi, the Lyme disease pathogen causes persistent infection by evading the host immune response. Differential expression of the surface-exposed lipoprotein VlsE that undergoes antigenic variation is a key immune evasion strategy employed by B. burgdorferi. Most studies focused on the mechanism of VlsE antigen variation, but little is known about VlsE regulation and factor(s) that regulates differential vlsE expression. In this study, we investigated BB0025, a putative YebC family transcriptional regulator (and hence designated BB0025 as YebC of B. burgdorferi herein). We constructed yebC mutant and complemented strain in an infectious strain of B. burgdorferi. The yebC mutant could infect immunocompromised SCID mice but not immunocompetent mice, suggesting that YebC plays an important role in evading host adaptive immunity. RNA-seq analyses identified vlsE as one of the genes whose expression was most affected by YebC. Quantitative RT-PCR and Western blot analyses confirmed that vlsE expression was dependent on YebC. In vitro, YebC and VlsE were co-regulated in response to growth temperature. In mice, both yebC and vlsE were inversely expressed with ospC in response to the host adaptive immune response. Furthermore, EMSA proved that YebC directly binds to the vlsE promoter, suggesting a direct transcriptional control. These data demonstrate that YebC is a new regulator that modulates expression of vlsE and other genes important for spirochetal infection and immune evasion in the mammalian host.