- Browse by Author
Browsing by Author "Lingler, Jennifer H."
Now showing 1 - 5 of 5
Results Per Page
Sort Options
Item Adverse Social Exposome by Area Deprivation Index (ADI) and Alzheimer’s Disease and Related Dementias (ADRD) Neuropathology for a National Cohort of Brain Donors within the Neighborhoods Study(Wiley, 2025-01-09) Kind, Amy J. H.; Bendlin, Barbara B.; Keller, Sarah A.; Powell, W. Ryan; DeWitt, Amanda; Cheng, Yixuan; Chamberlain, Luke; Lyons Boone, Brittney; Miller, Megan J.; Vik, Stacie M.; Abner, Erin L.; Alosco, Michael L.; Apostolova, Liana G.; Bakulski, Kelly M.; Barnes, Lisa L.; Bateman, James R.; Beach, Thomas G.; Bennett, David A.; Brewer, James B.; Carrion, Carmen; Chodosh, Joshua; Craft, Suzanne; Croff, Raina; Fabio, Anthony; Tomaszewski Farias, Sarah; Goldstein, Felicia; Henderson, Victor W.; Karikari, Thomas; Kofler, Julia; Kucharska-Newton, Anna M.; Lamar, Melissa; Lanata, Serggio; Lepping, Rebecca J.; Lingler, Jennifer H.; Lockhart, Samuel N.; Mahnken, Jonathan D.; Marsh, Karyn; Meyer, Oanh L.; Miller, Bruce L.; Morris, Jill K.; Neugroschl, Judith A.; O'Connor, Maureen K.; Paulson, Henry L.; Perrin, Richard J.; Pierce, Aimee; Raji, Cyrus A.; Reiman, Eric M.; Risacher, Shannon L.; Rissman, Robert A.; Rodriguez Espinoza, Patricia; Sano, Mary; Saykin, Andrew J.; Serrano, Geidy E.; Sultzer, David L.; Whitmer, Rachel A.; Wisniewski, Thomas; Woltjer, Randall; Zhu, Carolyn W.; Neurology, School of MedicineBackground: Adverse social exposome (indexed by high national Area Deprivation Index [ADI]) is linked to structural inequities and increased risk of clinical dementia diagnosis, yet linkage to ADRD neuropathology remains largely unknown. Early work from single site brain banks suggests a relationship, but assessment in large national cohorts is needed to increase generalizability and depth, particularly for rarer neuropathology findings. Objective: Determine the association between adverse social exposome by ADI and ADRD neuropathology for brain donors from 21 Alzheimer’s Disease Research Center (ADRC) brain banks as part of the on‐going Neighborhoods Study. Methods: All brain donors in participating sites with neuropathology data deposited at the National Alzheimer’s Coordinating Center (NACC) and identifiers for ADI linkage (N = 8,637; Figure 1) were included. Geocoded donor addresses were linked to time‐concordant national ADI percentiles for year of death, categorized into standard groupings of low (ADI 1‐19), medium (20‐49) and high (50‐100) ADI. Neuropathological findings were drawn from NACC and reflected standard assessment practices at time of donation. Logistic regression models, adjusted for sex and age at death, assessed relationships between high ADI and neuropathology findings. Results: Of the N = 8,637 brain donors (Table 1), 2,071 of 2,366 assessed (88%) had AD pathology by NIA‐AA criteria; 4,197 of 6,929 assessed (61%) had cerebral amyloid angiopathy; 2582 of 8092 assessed (32%) had Lewy body pathology; 391 of 2351 assessed (17%) had non‐AD tauopathy; and 586 of 1680 assessed (35%) had TDP‐43 pathology. 2,126(25%) were high ADI; 3,171(37%) medium ADI and 3,340(38%) low ADI with 51% female and average age at death of 81.9 years. As compared to low ADI donors, high ADI brain donors had adjusted odds = 1.35 (95% CI = 0.98‐1.86, p‐value = 0.06) for AD pathology; 1.10 (0.98–1.25, p = 0.11) for cerebral amyloid angiopathy; 1.37 (1.21–1.55, p<0.01) for Lewy body; 1.09 (0.83–1.44, p = 0.53) for non‐AD tauopathy; and 1.40 (1.08‐1.81, p = 0.01) for TDP‐43 pathology (Table 2). Conclusions: This first‐in‐field study provides evidence that the adverse social exposome (high ADI) is strongly associated with an increased risk of Lewy body, an increased risk of TDP‐43, and a trend towards increased AD pathology in a national cohort of brain donors.Item Attitudes Toward Advance Care Planning Among Persons with Dementia and their Caregivers(Cambridge University Press, 2020-05) Pettigrew, Corinne; Brichko, Rostislav; Black, Betty; O’Connor, Maureen K.; Guerriero Austrom, Mary; Robinson, Maisha T.; Lindauer, Allison; Shah, Raj C.; Peavy, Guerry M.; Meyer, Kayla; Schmitt, Frederick A.; Lingler, Jennifer H.; Domoto-Reilly, Kimiko; Farrar-Edwards, Dorothy; Albert, Marilyn; Psychiatry, School of MedicineObjectives: To examine factors that influence decision-making, preferences, and plans related to advance care planning (ACP) and end-of-life care among persons with dementia and their caregivers, and examine how these may differ by race. Design: Cross-sectional survey. Setting: 13 geographically dispersed Alzheimer's Disease Centers across the United States. Participants: 431 racially diverse caregivers of persons with dementia. Measurements: Survey on "Care Planning for Individuals with Dementia." Results: The respondents were knowledgeable about dementia and hospice care, indicated the person with dementia would want comfort care at the end stage of illness, and reported high levels of both legal ACP (e.g., living will; 87%) and informal ACP discussions (79%) for the person with dementia. However, notable racial differences were present. Relative to white persons with dementia, African American persons with dementia were reported to have a lower preference for comfort care (81% vs. 58%) and lower rates of completion of legal ACP (89% vs. 73%). Racial differences in ACP and care preferences were also reflected in geographic differences. Additionally, African American study partners had a lower level of knowledge about dementia and reported a greater influence of religious/spiritual beliefs on the desired types of medical treatments. Notably, all respondents indicated that more information about the stages of dementia and end-of-life health care options would be helpful. Conclusions: Educational programs may be useful in reducing racial differences in attitudes towards ACP. These programs could focus on the clinical course of dementia and issues related to end-of-life care, including the importance of ACP.Item Over‐Representation of Extremely Wealthy Neighborhood Social Exposomes for Brain Donors within Alzheimer’s Disease Research Center Brain Banks assessed by the Neighborhoods Study(Wiley, 2025-01-09) Kind, Amy J. H.; Bendlin, Barbara B.; Powell, W. Ryan; DeWitt, Amanda; Cheng, Yixuan; Chamberlain, Luke; Sharrow, Jessica; Lyons Boone, Brittney; Abner, Erin L.; Alosco, Michael L.; Apostolova, Liana G.; Bakulski, Kelly M.; Barnes, Lisa L.; Bateman, James R.; Beach, Thomas G.; Bennett, David A.; Brewer, James B.; Carrion, Carmen; Chodosh, Joshua; Craft, Suzanne; Croff, Raina; Fabio, Anthony; Tomaszewski Farias, Sarah; Goldstein, Felicia; Henderson, Victor W.; Karikari, Thomas K.; Kofler, Julia; Kucharska-Newton, Anna M.; Lamar, Melissa; Lanata, Serggio; Lepping, Rebecca J.; Lingler, Jennifer H.; Lockhart, Samuel N.; Mahnken, Jonathan D.; Marsh, Karyn; Meyer, Oanh L.; Miller, Bruce L.; Morris, Jill K.; Neugroschl, Judith A.; O'Connor, Maureen K.; Paulson, Henry L.; Perrin, Richard J.; Pettigrew, Corinne; Pierce, Aimee; Raji, Cyrus A.; Reiman, Eric M.; Risacher, Shannon L.; Rissman, Robert A.; Rodriguez Espinoza, Patricia; Sano, Mary; Saykin, Andrew J.; Serrano, Geidy E.; Soldan, Anja; Sultzer, David L.; Whitmer, Rachel A.; Wisniewski, Thomas; Woltjer, Randall; Zhu, Carolyn W.; Radiology and Imaging Sciences, School of MedicineBackground: Adverse social exposome (indexed by national Area Deprivation Index [ADI] 80‐100 or ‘high ADI’) is linked to structural inequities and increased risk of Alzheimer’s disease neuropathology. Twenty percent of the US population resides within high ADI areas, predominantly in inner cities, tribal reservations and rural areas. The percentage of brain donors from high ADI areas within the Alzheimer’s Disease Research Center (ADRC) brain bank system is unknown. Objective: Determine ADI for brain donors from 21 ADRC sites as part of the on‐going Neighborhoods Study. Methods: All brain donors in participating ADRC sites with NACC neuropathology data and personal identifiers for ADI linkage (N = 8,637) were included (Figure 1). Geocoded donor addresses were linked to time‐concordant ADI percentiles for year of death. Results: Overall, only 5.6% of ADRC brain donors (N = 488) resided in a high ADI (disadvantaged) neighborhood at death. The remaining donors resided in more advantaged neighborhoods, with nearly 40% of donors living in the wealthiest quintile of neighborhoods, and over 300 brain donors originating from the wealthiest 1% of US neighborhoods (Figure 2). Donors from high ADI (disadvantaged) neighborhoods identified as 87% White (n = 424), 11% Black (55), 1% Multiracial (6) and <1% other/unknown race (3), with 1% Hispanic (5). None identified as American Indian/Alaska Native or Native Hawaiian/Pacific Islander/Asian. In comparison, donors from low ADI neighborhoods were 94% White (n = 7680), 3% Black (273), 1% Multiracial (75), <1% American Indian/Alaska Native (11), <1% Native Hawaiian/Pacific Islander/Asian (60), and <1% other/unknown race (50), with 3% Hispanic (230). Sex distribution was similar (54%, 51% female, respectively). Inclusion of high ADI donors varied dramatically across the 21 ADRC brain banks from a low of 0.6% to high of 20% of all a site’s donors (Figure 3). Conclusions: ADI was determined for over 8,600 brain donors in the ADRC system, demonstrating a marked over‐representation of donors from very low ADI (extremely wealthy) neighborhoods, in addition to site‐to‐site variability. This is the first time a comprehensive cross‐sectional social exposome assessment of this nature has been performed, opening windows for additional mechanistic study of the social exposome on brain pathology. Life course ADI assessments are on‐going.Item Perspective on the "African American participation in Alzheimer disease research: Effective strategies" workshop, 2018(Wiley, 2020-12) Denny, Andrea; Streitz, Marissa; Stock, Kristin; Balls-Berry, Joyce E.; Barnes, Lisa L.; Byrd, Goldie S.; Croff, Raina; Gao, Sujuan; Glover, Crystal M.; Hendrie, Hugh C.; Hu, William T.; Manly, Jennifer J.; Moulder, Krista L.; Stark, Susan; Thomas, Stephen B.; Whitmer, Rachel; Wong, Roger; Morris, John C.; Lingler, Jennifer H.; Psychiatry, School of MedicineThe Washington University School of Medicine Knight Alzheimer Disease Research Center's "African American Participation in Alzheimer Disease Research: Effective Strategies" Workshop convened to address a major limitation of the ongoing scientific progress regarding Alzheimer's disease and related dementias (ADRD): participants in most ADRD research programs overwhelmingly have been limited to non-Hispanic white persons, thus precluding knowledge as to how ADRD may be represented in non-white individuals. Factors that may contribute to successful recruitment and retention of African Americans into ADRD research were discussed and organized into actionable next steps as described within this report.Item The Advisory Group on Risk Evidence Education for Dementia: Multidisciplinary and Open to All(IOS Press, 2022) Rosen, Allyson C.; Arias, Jalayne J.; Ashford, J. Wesson; Blacker, Deborah; Chhatwal, Jasmeer P.; Chin, Nathan A.; Clark, Lindsay; Denny, Sharon S.; Goldman, Jill S.; Gleason, Carey E.; Grill, Joshua D.; Heidebrink, Judith L.; Henderson, Victor W.; Lavacot, James A.; Lingler, Jennifer H.; Menon, Malavika; Nosheny, Rachel L.; Oliveira, Fabricio F.; Parker, Monica W.; Rahman-Filipiak, Annalise; Revoori, Anwita; Rumbaugh, Malia C.; Sanchez, Danurys L.; Schindler, Suzanne E.; Schwarz, Christopher G.; Toy, Leslie; Tyrone, Jamie; Walter, Sarah; Wang, Li-san; Wijsman, Ellen M.; Zallen, Doris T.; Aggarwal, Neelum T.; Medical and Molecular Genetics, School of MedicineThe brain changes of Alzheimer’s disease and other degenerative dementias begin long before cognitive dysfunction develops, and in people with subtle cognitive complaints, clinicians often struggle to predict who will develop dementia. The public increasingly sees benefits to accessing dementia risk evidence (DRE) such as biomarkers, predictive algorithms, and genetic information, particularly as this information moves from research to demonstrated usefulness in guiding diagnosis and clinical management. For example, the knowledge that one has high levels of amyloid in the brain may lead one to seek amyloid reducing medications, plan for disability, or engage in health promoting behaviors to fight cognitive decline. Researchers often hesitate to share DRE data, either because they are insufficiently validated or reliable for use in individuals, or there are concerns about assuring responsible use and ensuring adequate understanding of potential problems when one’s biomarker status is known. Concerns include warning people receiving DRE about situations in which they might be compelled to disclose their risk status potentially leading to discrimination or stigma. The Advisory Group on Risk Evidence Education for Dementia (AGREEDementia) welcomes all concerned with how best to share and use DRE. Supporting understanding in clinicians, stakeholders, and people with or at risk for dementia and clearly delineating risks, benefits, and gaps in knowledge is vital. This brief overview describes elements that made this group effective as a model for other health conditions where there is interest in unfettered collaboration to discuss diagnostic uncertainty and the appropriate use and communication of health-related risk information.