- Browse by Author
Browsing by Author "Li, Yue"
Now showing 1 - 10 of 13
Results Per Page
Sort Options
Item Contrasting water use characteristics of riparian trees under different water tables along a losing river(Elsevier, 2022-08) Li, Yue; Ma, Ying; Song, Xianfang; Wang, Lixin; Yang, Lihu; Li, Xiaoyan; Li, Binghua; Earth and Environmental Sciences, School of ScienceRivers losing flow into surrounding aquifers (‘losing’ rivers) are common under changing climates and groundwater overexploitation. The riparian plant-water relations under various water table dynamics along a losing river remain unclear. In this study, the water isotopes (δ2H and δ18O), leaf δ13C, and MixSIAR model were used combinedly for determining the root water uptake patterns and leaf water use efficiency (WUE) of Salix babylonica (L.) at three sites (A, B, and C) with different water table depths (WTDs) in the riparian zone of Jian and Chaobai River in Beijing, China. The correlations of water source contributions with WTD and WUE were quantified. The riparian S. babylonica primarily took up upper (0–80 cm) soil water (71.5%) with the lowest leaf δ13C (−28.8 ± 1.1 ‰) at site A under deep WTD (20.5 ± 0.5 m). In contrast, deep water below 80 cm depth including groundwater contributed 55.1% to S. babylonica at site B with fluctuated shallow WTD (1.9 ± 0.4 m), where leaf δ13C was highest (−27.9 ± 1.0 ‰). The S. babylonica mainly used soil water in 30–170 cm layer (56.9%) with mean leaf δ13C of − 28.2 ‰ ± 0.7 ‰ at site C with stable shallow WTD (1.5 ± 0.1 m). It was found that both the contributions of upper soil water in 0–80 cm and deep water below 80 cm had significantly quadratic correlations with WTD under shallow water table conditions (p < 0.05). Leaf δ13C was negatively correlated with contributions of upper soil water above 80 cm depth, but it was positively related to the contributions of deep water below 80 cm in linear functions (p < 0.001). The results indicated that 2.1 m was the optimum WTD for riparian trees, because they maximized the use of deep water sources to get the highest WUE. This study provides insights into managing groundwater, surface water resources and riparian afforestation in losing rivers.Item Effects of Long‐Term Storage on the Isotopic Compositions of Different Types of Environmental Waters(Wiley, 2025) Diersing, Carlynn; Li, Yue; Wang, Lixin; Earth and Environmental Sciences, School of ScienceRationale: Fog, dew, and rain are crucial for sustaining ecosystem functions, especially in water-limited regions. However, they are subject to isotopic changes during storage due to their usual small sample volumes and inherent sensitivity to atmospheric particulates. Understanding long-term storage effects on these water samples is essential for ensuring isotopic integrity. Methods: In this study, the extent of such changes in the isotopic compositions (δ2H, δ18O, and δ17O) of fog, dew, and rain was investigated under different storage times (4.5-9 years) and different bottle fill levels (4.8%-92.4%) using the Los Gatos Research Inc. GLA431 series analyzer. Results: The long-term storage could lead to a large variation in oxygen isotopes of fog with minor effects on dew and rain samples. The isotopic changes of δ18O for fog waters were negatively correlated with the bottle fill level (p < 0.01) but positively related to storage time (p < 0.01). Chemical reactions between solutes and water molecules within fog samples may induce oxygen fractionation, leading to the high sensitivity of fog oxygen isotopes to long-term storage. No significant changes in δ2H values were observed for the three water types. Conclusions: Our findings could help understand the long-term isotopic accuracy and precision of fog, dew, and rainwaters by providing information on isotopic changes after long-term storage.Item Impact of Innovative Technology-Related Interventions on K–12 Students' STEM Career-Related Outcomes: A Meta-Analysis(American Educational Research Association (AERA), 2022-04-21) Li, Yue; Dixon, Maressa; Jacobsen, Anna Liss; Maltbie, Anna; Woodruff, SarahThis meta-analysis study reviews and synthesizes research and evaluation findings demonstrating the effects of integrating innovative technologies and technology-based learning experiences in STEM education on K-12 students’ STEM career-related outcomes. This study synthesizes a body of research from 1995 to the present, across characteristics of technology-based STEM education interventions, learning contexts, student demographics, and study designs. This study develops an understanding of the extent to which the effects of technology-based STEM education interventions are different for students who are traditionally underserved and underrepresented in STEM education. Findings suggest such interventions have small, positive effects on students’ STEM career outcomes. Interventions serving underrepresented students had larger influences on students’ career outcomes than those serving general student populations.Item Integrating innovating technology into STEM learning: Preliminary findings from a Meta-Analysis on K-12 students’ STEM career interests(2023-10-19) Li, Yue; Dixon, Maressa; Qi, Kunting; Jacobsen, Anna Liss; Woodruff, SarahThis paper presents preliminary findings from a meta-analysis study that reviews and synthesizes studies related to the effects of innovative technology-related learning experiences in formal and informal K-12 STEM education on students’ STEM career-related outcomes. This meta-analysis synthesizes a body of research from 1995 to the present, across characteristics of technology-based STEM education interventions, learning contexts, student demographics, and study designs. Findings presented in this paper describe the characteristics of these innovative technology-related educational interventions, including intervention content, format, and setting, as well as their collective impact on students’ STEM career aspirations. Variables examined also include whether an intervention aimed at serving students from backgrounds that are traditionally underrepresented and underserved in STEM education and whether an intervention has an explicit career-exploration component. This paper sheds light on the diverse landscape of technology-related STEM education, offering valuable insights for educators, policymakers, and researchers striving to enhance students' pursuit of STEM careers.Item Quantifying river water contributions to the transpiration of riparian trees along a losing river: lessons from stable isotopes and an iteration method(EGU, 2023) Li, Yue; Ma, Ying; Song, Xianfang; Zhang, Qian; Wang, Lixin; Earth and Environmental Sciences, School of ScienceRiver water plays a critical role in riparian plant water use and riparian ecosystem restoration along losing rivers (i.e., river water recharging underlying groundwater). How to quantify the contributions of river water to the transpiration of riparian plants under different groundwater levels and the related responses of plant water use efficiency is a great challenge. In this study, observations of stable isotopes of water (δ2H and δ18O), 222Rn, and leaf δ13C were conducted for the deep-rooted riparian weeping willow (Salix babylonica L.) in 2019 (dry year) and 2021 (wet year) along the Chaobai River in Beijing, China. We proposed an iteration method in combination with the MixSIAR model to quantify the river water contribution to the transpiration of riparian S. babylonica and its correlations with the water table depth and leaf δ13C. Our results demonstrated that riparian S. babylonica took up deep water (in the 80–170 cm soil layer and groundwater) by 56.5 % ± 10.8 %. River water recharging riparian deep water was an indirect water source and contributed 20.3 % of water to the transpiration of riparian trees near the losing river. Significantly increasing river water uptake (by 7.0 %) and decreasing leaf δ13C (by −2.0 ‰) of riparian trees were observed as the water table depth changed from 2.7 m in the dry year of 2019 to 1.7 m in the wet year of 2021 (p<0.05). The higher water availability probably promoted stomatal opening and thus increased transpiration water loss, leading to the decreasing leaf δ13C in the wet year compared to the dry year. The river water contribution to the transpiration of riparian S. babylonica was found to be negatively linearly correlated with the water table depth and leaf δ13C (p<0.01). The rising groundwater level may increase the water extraction from the groundwater and/or river and produce a consumptive river-water-use pattern of riparian trees, which can have an adverse impact on the conservation of both river flow and riparian vegetation. This study provides new insights into understanding the mechanisms of the water cycle in a groundwater–soil–plant–atmosphere continuum and managing water resources and riparian afforestation along losing rivers.Item Quantitative contribution of cryogenic vacuum extraction and radial water transport to xylem-source water deuterium offsets(Elsevier, 2024-02) Li, Yue; Song, Xianfang; Wang, Lixin; Sprenger, Matthias; Ma, Ying; Earth and Environmental Sciences, School of ScienceThe positions and magnitudes of deuterium offsets between bulk xylem and corresponding source waters are under debate and quantifying them is essential for isotope-based ecohydrological investigations. In this study, stable isotopes (δ2H, δ18O, and δ13C), iteration method, and rehydration experiments were combined to quantitatively determine the magnitude of cryogenic vacuum extraction (CVE)- and radial water transport (RWT)-induced deuterium offsets using one riparian tree species Salix babylonica L. A modified potential water source line (MPWL) was proposed to identify the total δ2H offsets between bulk xylem and source waters. The relationships between δ2H offsets induced by CVE or RWT and plant water content, leaf δ13C values, soil water content (SWC), and the depth to the water table (WTD) were investigated. Results showed that the bulk xylem waters in different tissue positions of S. babylonica showed −7.0 ‰ to −4.0 ‰ deuterium depletion relative to MPWL at four different sites (p < 0.01). The isotopic compositions of sap water coincided well with MPWL on the dual-isotope plot at the four sites. The CVE- and RWT-induced δ2H offsets accounted for 75.1 % and 24.9 % of the total δ2H offsets, respectively. The CVE-induced δ2H offsets were significantly negatively correlated with plant water content. In comparison, the RWT-induced δ2H offsets were negatively related to plant leaf δ13C values, trunk water content, and SWC, but positively correlated with WTD. This study provides a quantitative contribution of two major sources of deuterium offsets. The results provide critical insights into isotope-based plant water source identification and evapotranspiration partitioning.Item STAT6 and Furin Are Successive Triggers for the Production of TGF-β by T Cells(The American Association of Immunologists, Inc., 2018-11) Li, Yue; Liu, Weiren; Guan, Xiaqun; Truscott, Jamie; Creemers, John W.; Chen, Hung-Lin; Pesu, Marko; El Abiad, Rami G.; Karacay, Bahri; Urban, Joseph F.; Elliott, David E.; Kaplan, Mark H.; Blazar, Bruce R.; Ince, M. Nedim; Pediatrics, School of MedicineProduction of TGF-β by T cells is key to various aspects of immune homeostasis, with defects in this process causing or aggravating immune-mediated disorders. The molecular mechanisms that lead to TGF-β generation by T cells remain largely unknown. To address this issue, we take advantage of the fact that intestinal helminths stimulate Th2 cells besides triggering TGF-β generation by T lymphocytes and regulate immune-mediated disorders. We show that the Th2 cell-inducing transcription factor STAT6 is necessary and sufficient for the expression of TGF-β propeptide in T cells. STAT6 is also necessary for several helminth-triggered events in mice, such as TGF-β-dependent suppression of alloreactive inflammation in graft-versus-host disease. Besides STAT6, helminth-induced secretion of active TGF-β requires cleavage of propeptide by the endopeptidase furin. Thus, for the immune regulatory pathway necessary for TGF-β production by T cells, our results support a two-step model, composed of STAT6 and furin.Item Suppression of choroidal neovascularization through inhibition of APE1/Ref-1 redox activity(Association for Research in Vision and Opthalmology, 2014-07) Li, Yue; Liu, Xiuli; Zhou, Tongrong; Kelley, Mark R.; Edwards, Paul A.; Gao, Hua; Qiao, Xiaoxi; Department of Pediatrics, IU School of MedicinePURPOSE: The redox function of APE1/Ref-1 is a key regulator in pathological angiogenesis, such as retinal neovascularization and tumor growth. In this study, we examined whether inhibition of APE1/Ref-1 redox function by a small molecule inhibitor E3330 suppresses experimental choroidal neovascularization (CNV) in vitro and in vivo. METHODS: Primate choroid endothelial cells (CECs) received treatment of 0 to 100 μM E3330 alone or cotreatment of E3330 and 500 μg/mL anti-VEGF antibody bevacizumab. Choroid endothelial cell angiogenic function was examined by cell proliferation, migration, and tube formation assays. The effects of E3330 on NF-κB and STAT3 signaling pathways were determined by reporter gene assay, Western blot, and ELISA. Laser-induced CNV mouse model was used to test the effects of E3330 in vivo. Potential toxicity of E3330 was evaluated by TUNEL assay. RESULTS: The E3330 of 25 to 100 μM dose-dependently suppressed CEC proliferation, migration, and tube formation, in the absence of noticeable cell toxicity. Lower doses of E3330 (10-20 μM) reduced the transcriptional activity of NF-κB and STAT3 without affecting protein phosphorylation of both molecules. At the same time, E3330 downregulated MCP-1 production in CECs. The antiangiogenic effect of E3330 was comparable and additive to bevacizumab. The E3330 effectively attenuated the progression of laser-induced CNV in mice after a single intravitreal injection. CONCLUSIONS: The APE1/Ref-1 redox function regulates multiple transcription factors and inflammatory molecules, and is essential for CEC angiogenesis. Specific inhibition of APE1/Ref-1 redox function with E3330 may represent a promising novel treatment for wet AMD.Item The Impact of Cell-Intrinsic STAT6 Protein on Donor T Cell-Mediated Graft-Versus-Tumor Effect(MDPI, 2024-12-31) Guan, Xiaoqun; Fury, Hope; Issuree, Priya D.; Atagozli, Tyler; McManimon, Emory E.; Shao, Peng; Li, Yue; Chimenti, Michael; Butler, Noah S.; Kaplan, Mark H.; Elliott, David E.; Blazar, Bruce R.; Ince, M. Nedim; Pediatrics, School of MedicineBone marrow transplantation (BMT) is mainly performed to restore an anti-tumor immune response, called the graft-versus-tumor (GVT) effect, against leukemia, myeloma and lymphoma. This GVT reactivity is driven by donor T cells, and it can also cause lethal graft-versus-host disease (GVHD). We previously demonstrated that the colonization of mice with helminths preserves the GVT response while suppressing GVHD. As the T helper-2 (Th2) pathway is critical to helminthic immune regulation, we asked whether the genetic induction of Th2 signaling in donor T cells can restore helminthic immune regulation after BMT. Our studies utilized transgenic donor T lymphocytes that overexpress a constitutively active form of the Th2-associated transcription factor STAT6. Constitutively active STAT6 sustained the GVT response without causing severe acute GVHD, where transgenic T cells generated robust quantities of cytotoxic proteins important in GVT response, such as granzymes A and B, interferon-γ and Fas ligand, in addition to generating high quantities of Th2/regulatory cytokines. Bioinformatic analysis based on chromosome immune precipitation experiments indicated that STAT6 stimulates the expression of granzymes directly. Thus, in preserving the GVT response without causing GVHD mortality, our results indicate the therapeutic potential of restoring helminthic immune modulation by targeting STAT6 and STAT6-dependent T cell maturation.Item The Volume-Outcome Relationship in Nursing Home Care: An Examination of Functional Decline Among Long-term Care Residents(Wolters Kluwer, 2010) Li, Yue; Cai, Xueya; Mukamel, Dana B.; Glance, Laurent G.; Biostatistics, School of Public HealthBackground: Extensive evidence has demonstrated a relationship between patient volume and improved clinical outcomes in hospital care. This study sought to determine whether a similar association exists between nursing home volume of long-term care residents and rates of decline in physical function. Methods: We conducted retrospective analyses on the 2004 and 2005 Minimum Data Set files that contain 605,433 eligible long-term residents in 9336 nursing homes. The outcome was defined following the federal “Nursing Home Compare” measure that captures changes in 4 basic activities of daily living status between 2 consecutive quarters. Both the outcome measure and nursing home volume were defined on the basis of long-term care residents. We estimated random-effects logistic regression models to quantify the independent impact of volume on functional decline. Results: As volume increased, nursing home’s unadjusted rate of functional decline tended to be lower. After multivariate adjustment for baseline resident characteristics and the nesting of residents within facilities, the odds ratio of activities of daily living decline was 0.82 (95% confidence interval: 0.79–0.86, P < 0.000) for residents in high-volume nursing homes (>101 residents/facility), compared with residents in low-volume facilities (30–51 residents/facility). Conclusions: High volume of long-term care residents in a nursing home is associated with overall less functional decline. Further studies are needed to test other important nursing home outcomes, and explore various institutional, staffing, and resource attributes that underlie this volume-outcome association for long-term care. Understanding how greater experience of high-volume facilities leads to better resident outcome may help guide quality improvement efforts in nursing homes.