- Browse by Author
Browsing by Author "Lee, Younghee"
Now showing 1 - 10 of 10
Results Per Page
Sort Options
Item ADAS-viewer: web-based application for integrative analysis of multi-omics data in Alzheimer’s disease(Springer Nature, 2021-03-19) Han, Seonggyun; Shin, Jaehang; Jung, Hyeim; Ryu, Jane; Minassie, Habtamu; Nho, Kwangsik; Koh, Insong; Lee, Younghee; Radiology and Imaging Sciences, School of MedicineAlzheimer’s disease (AD) is a neurodegenerative disorder and is represented by complicated biological mechanisms and complexity of brain tissue. Our understanding of the complicated molecular architecture that contributes to AD progression benefits from performing comprehensive and systemic investigations with multi-layered molecular and biological data from different brain regions. Since recently different independent studies generated various omics data in different brain regions of AD patients, multi-omics data integration can be a useful resource for better comprehensive understanding of AD. Here we present a web platform, ADAS-viewer, that provides researchers with the ability to comprehensively investigate and visualize multi-omics data from multiple brain regions of AD patients. ADAS-viewer offers means to identify functional changes in transcript and exon expression (i.e., alternative splicing) along with associated genetic or epigenetic regulatory effects. Specifically, it integrates genomic, transcriptomic, methylation, and miRNA data collected from seven different brain regions (cerebellum, temporal cortex, dorsolateral prefrontal cortex, frontal pole, inferior frontal gyrus, parahippocampal gyrus, and superior temporal gyrus) across three independent cohort datasets. ADAS-viewer is particularly useful as a web-based application for analyzing and visualizing multi-omics data across multiple brain regions at both transcript and exon level, allowing the identification of candidate biomarkers of Alzheimer’s disease.Item Alternative Splicing Regulation of an Alzheimer’s Risk Variant in CLU(MDPI, 2020-09-25) Han, Seonggyun; Nho, Kwangsik; Lee, Younghee; Radiology and Imaging Sciences, School of MedicineClusterin (CLU) is one of the risk genes most associated with late onset Alzheimer’s disease (AD), and several genetic variants in CLU are associated with AD risk. However, the functional role of known AD risk genetic variants in CLU has been little explored. We investigated the effect of an AD risk variant (rs7982) in the 5th exon of CLU on alternative splicing by using an integrative approach of brain-tissue-based RNA-Seq and whole genome sequencing data from Accelerating Medicines Partnership—Alzheimer’s Disease (AMP-AD). RNA-Seq data were generated from three regions in the temporal lobe of the brain—the temporal cortex, superior temporal gyrus, and parahippocampal gyrus. The rs7982 was significantly associated with intron retention (IR) of the 5th exon of CLU; as the number of alternative alleles (G) increased, the IR rates decreased more significantly in females than in males. Our results suggest a sex-dependent role of rs7982 in AD pathogenesis via splicing regulation.Item Alternative Splicing Regulation of Low-Frequency Genetic Variants in Exon 2 of TREM2 in Alzheimer's Disease by Splicing-Based Aggregation(MDPI, 2021-09-13) Han, Seonggyun; Na, Yirang; Koh, Insong; Nho, Kwangsik; Lee, Younghee; Radiology and Imaging Sciences, School of MedicineTREM2 is among the most well-known Alzheimer’s disease (AD) risk genes; however, the functional roles of its AD-associated variants remain to be elucidated, and most known risk alleles are low-frequency variants whose investigation is challenging. Here, we utilized a splicing-guided aggregation method in which multiple low-frequency TREM2 variants were bundled together to investigate the functional impact of those variants on alternative splicing in AD. We analyzed whole genome sequencing (WGS) and RNA-seq data generated from cognitively normal elderly controls (CN) and AD patients in two independent cohorts, representing three regions in the frontal lobe of the human brain: the dorsolateral prefrontal cortex (CN = 213 and AD = 376), frontal pole (CN = 72 and AD = 175), and inferior frontal (CN = 63 and AD = 157). We observed an exon skipping event in the second exon of TREM2, with that exon tending to be more frequently skipped (p = 0.0012) in individuals having at least one low-frequency variant that caused loss-of-function for a splicing regulatory element. In addition, genes differentially expressed between AD patients with high vs. low skipping of the second exon (i.e., loss of a TREM2 functional domain) were significantly enriched in immune-related pathways. Our splicing-guided aggregation method thus provides new insight into the regulation of alternative splicing of the second exon of TREM2 by low-frequency variants and could be a useful tool for further exploring the potential molecular mechanisms of multiple, disease-associated, low-frequency variants.Item Brain Region-Dependent Alternative Splicing of Alzheimer Disease (AD)-Risk Genes Is Associated With Neuropathological Features in AD(Korean Continence Society, 2022) Kim, Sara; Han, Seonggyun; Cho, Soo-Ah; Nho, Kwangsik; Koh, Insong; Lee, Younghee; Radiology and Imaging Sciences, School of MedicinePurpose: Alzheimer disease (AD) is one of the most complex diseases and is characterized by AD-related neuropathological features, including accumulation of amyloid-β plaques and tau neurofibrillary tangles. Dysregulation of alternative splicing (AS) contributes to these features, and there is heterogeneity in features across brain regions between AD patients, leading to different severity and progression rates; however, brain region-specific AS mechanisms still remain unclear. Therefore, we aimed to systemically investigate AS in multiple brain regions of AD patients and how they affect clinical features. Methods: We analyzed RNA sequencing (RNA-Seq) data obtained from brain regions (frontal and temporal) of AD patients. Reads were mapped to the hg19 reference genome using the STAR aligner, and exon skipping (ES) rates were estimated as percent spliced in (PSI) by rMATs. We focused on AD-risk genes discovered by genome-wide association studies, and accordingly evaluated associations between PSI of skipped exons in AD-risk genes and Braak stage and plaque density mean (PM) for each brain region. We also integrated whole-genome sequencing data of the ascertained samples with RNA-Seq data to identify genetic regulators of feature-associated ES. Results: We identified 26 and 41 ES associated with Braak stage in frontal and temporal regions, respectively, and 10 and 50 ES associated with PM. Among those, 10 were frontal-specific (CLU and NTRK2), 65 temporal-specific (HIF1A and TRPC4AP), and 26 shared ES (APP) that accompanied functional Gene Ontology terms, including axonogenesis in shared-ES genes. We further identified genetic regulators that account for 44 ES (44% of the total). Finally, we present as a case study the systematic regulation of an ES in APP, which is important in AD pathogenesis. Conclusion: This study provides new insights into brain region-dependent AS regulation of the architecture of AD-risk genes that contributes to AD pathologies, ultimately allowing identification of a treatment target and region-specific biomarkers for AD.Item Differentiation of human pluripotent stem cells to cells similar to cord-blood endothelial colony-forming cells(Nature Publishing Group, 2014-11) Prasain, Nutan; Lee, Man Ryul; Vemula, Sasidhar; Meador, Jonathan Luke; Yoshimoto, Momoko; Ferkowicz, Michael J.; Fett, Alexa; Gupta, Manav; Rapp, Brian M.; Saadatzadeh, Mohammad Reza; Ginsberg, Michael; Elemento, Olivier; Lee, Younghee; Voytik-Harbin, Sherry L.; Chung, Hyung Min; Hong, Ki Sung; Reid, Emma; O'Neill, Christina L.; Medina, Reinhold J.; Stitt, Alan W.; Murphy, Michael P.; Rafii, Shahin; Broxmeyer, Hal E.; Yoder, Mervin C.; Department of Pediatrics, IU School of MedicineThe ability to differentiate human pluripotent stem cells into endothelial cells with properties of cord-blood endothelial colony-forming cells (CB-ECFCs) may enable the derivation of clinically relevant numbers of highly proliferative blood vessel-forming cells to restore endothelial function in patients with vascular disease. We describe a protocol to convert human induced pluripotent stem cells (hiPSCs) or embryonic stem cells (hESCs) into cells similar to CB-ECFCs at an efficiency of >10(8) ECFCs produced from each starting pluripotent stem cell. The CB-ECFC-like cells display a stable endothelial phenotype with high clonal proliferative potential and the capacity to form human vessels in mice and to repair the ischemic mouse retina and limb, and they lack teratoma formation potential. We identify Neuropilin-1 (NRP-1)-mediated activation of KDR signaling through VEGF165 as a critical mechanism for the emergence and maintenance of CB-ECFC-like cells.Item Genetic variation affecting exon skipping contributes to brain structural atrophy in Alzheimer's disease(American Medical Informatics Association, 2018-05-18) Lee, Younghee; Han, Seonggyun; Kim, Dongwook; Kim, Dokyoon; Horgousluoglu, Emrin; Risacher, Shannon L.; Saykin, Andrew J.; Nho, Kwangsik; Alzheimer’s Disease Neuroimaging Initiative; Radiology and Imaging Sciences, School of MedicineGenetic variation in cis-regulatory elements related to splicing machinery and splicing regulatory elements (SREs) results in exon skipping and undesired protein products. We developed a splicing decision model to identify actionable loci among common SNPs for gene regulation. The splicing decision model identified SNPs affecting exon skipping by analyzing sequence-driven alternative splicing (AS) models and by scanning the genome for the regions with putative SRE motifs. We used non-Hispanic Caucasians with neuroimaging, and fluid biomarkers for Alzheimer's disease (AD) and identified 17,088 common exonic SNPs affecting exon skipping. GWAS identified one SNP (rs1140317) in HLA-DQB1 as significantly associated with entorhinal cortical thickness, AD neuroimaging biomarker, after controlling for multiple testing. Further analysis revealed that rs1140317 was significantly associated with brain amyloid-f deposition (PET and CSF). HLA-DQB1 is an essential immune gene and may regulate AS, thereby contributing to AD pathology. SRE may hold potential as novel therapeutic targets for AD.Item Identification of exon skipping events associated with Alzheimer's disease in the human hippocampus(Biomed Central, 2019-01-31) Han, Seonggyun; Miller, Jason E.; Byun, Seyoun; Kim, Dokyoon; Risacher, Shannon L.; Saykin, Andrew J.; Lee, Younghee; Nho, Kwangsik; Radiology and Imaging Sciences, School of MedicineBACKGROUND: At least 90% of human genes are alternatively spliced. Alternative splicing has an important function regulating gene expression and miss-splicing can contribute to risk for human diseases, including Alzheimer's disease (AD). METHODS: We developed a splicing decision model as a molecular mechanism to identify functional exon skipping events and genetic variation affecting alternative splicing on a genome-wide scale by integrating genomics, transcriptomics, and neuroimaging data in a systems biology approach. In this study, we analyzed RNA-Seq data of hippocampus brain tissue from Alzheimer's disease (AD; n = 24) and cognitively normal elderly controls (CN; n = 50) and identified three exon skipping events in two genes (RELN and NOS1) as significantly associated with AD (corrected p-value < 0.05 and fold change > 1.5). Next, we identified single-nucleotide polymorphisms (SNPs) affecting exon skipping events using the splicing decision model and then performed an association analysis of SNPs potentially affecting three exon skipping events with a global cortical measure of amyloid-β deposition measured by [18F] Florbetapir position emission tomography (PET) scan as an AD-related quantitative phenotype. A whole-brain voxel-based analysis was also performed. RESULTS: Two exons in RELN and one exon in NOS1 showed significantly lower expression levels in the AD participants compared to CN participants, suggesting that the exons tend to be skipped more in AD. We also showed the loss of the core protein structure due to the skipped exons using the protein 3D structure analysis. The targeted SNP-based association analysis identified one intronic SNP (rs362771) adjacent to the skipped exon 24 in RELN as significantly associated with cortical amyloid-β levels (corrected p-value < 0.05). This SNP is within the splicing regulatory element, i.e., intronic splicing enhancer. The minor allele of rs362771 conferred decreases in cortical amyloid-β levels in the right temporal and bilateral parietal lobes. CONCLUSIONS: Our results suggest that exon skipping events and splicing-affecting SNPs in the human hippocampus may contribute to AD pathogenesis. Integration of multiple omics and neuroimaging data provides insights into possible mechanisms underlying AD pathophysiology through exon skipping and may help identify novel therapeutic targets.Item Rare variants in the splicing regulatory elements of EXOC3L4 are associated with brain glucose metabolism in Alzheimer's disease(Biomed Central, 2018-09-14) Miller, Jason E.; Shivakumar, Manu K.; Lee, Younghee; Han, Seonggyun; Horgousluoglu, Emrin; Risacher, Shannon L.; Saykin, Andrew J.; Nho, Kwangsik; Kim, Dokyoon; Radiology and Imaging Sciences, School of MedicineBACKGROUND: Alzheimer's disease (AD) is one of the most common neurodegenerative diseases that causes problems related to brain function. To some extent it is understood on a molecular level how AD arises, however there are a lack of biomarkers that can be used for early diagnosis. Two popular methods to identify AD-related biomarkers use genetics and neuroimaging. Genes and neuroimaging phenotypes have provided some insights as to the potential for AD biomarkers. While the field of imaging-genomics has identified genetic features associated with structural and functional neuroimaging phenotypes, it remains unclear how variants that affect splicing could be important for understanding the genetic etiology of AD. METHODS: In this study, rare variants (minor allele frequency < 0.01) in splicing regulatory element (SRE) loci from whole genome sequencing (WGS) in the Alzheimer's Disease Neuroimaging Initiative (ADNI) cohort, were used to identify genes that are associated with global brain cortical glucose metabolism in AD measured by FDG PET-scans. Gene-based associated analyses of rare variants were performed using the program BioBin and the optimal Sequence Kernel Association Test (SKAT-O). RESULTS: The gene, EXOC3L4, was identified as significantly associated with global cortical glucose metabolism (FDR (false discovery rate) corrected p < 0.05) using SRE coding variants only. Three loci that may affect splicing within EXOC3L4 contribute to the association. CONCLUSION: Based on sequence homology, EXOC3L4 is likely a part of the exocyst complex. Our results suggest the possibility that variants which affect proper splicing of EXOC3L4 via SREs may impact vesicle transport, giving rise to AD related phenotypes. Overall, by utilizing WGS and functional neuroimaging we have identified a gene significantly associated with an AD related endophenotype, potentially through a mechanism that involves splicing.Item Synergistic activation of p70S6 kinase associated with stem cell factor in MO7e cells(Springer Nature, 2003-06) Lee, Younghee; Broxmeyer, Hal E.; Mantel, Charlie; Kwon, Hyung-Joo; Wha Kim, Jae; Sook Kim, Jin; Kwon, Durhan; Seong Chloe, In; Biochemistry and Molecular Biology, School of MedicineStem cell factor (SCF) is an early-acting cytokine inducing proliferative synergy with other cytokines in hematopoietic cells. We earlier showed that p21 was synergistically induced in SCF synergy and the p44/42 MAPK pathway was essential for the transcriptional control of p21. SCF synergy accompanies protein synthesis. p70S6K implicated in translational control in many other systems has not been shown in SCF synergy induced system. GM-CSF dependent human cell line MO7e was stimulated with GM-CSF with SCF, and investigated activation of p70S6K by using phospho-specific antibody. A possible contribution of p70S6K to SCF synergy was examined by measuring p21 induction as a model system. p70S6K was slightly activated by GM-CSF alone and markedly activated by SCF alone. Combined stimulation with these two cytokines synergistically activated p70S6K resulting in persistent activation. Addition of the pathway- specific inhibitors for PI3K or FRAP/TOR, two upstream pathways of p70S6K resulted in abolishment of p70S6K phosphorylation and also significant reduction of p21 protein level. These data suggest that synergistically activated p70S6K by GM-CSF plus SCF involves, at least in part, protein translational control including regulation of p21 protein.Item TREM2 splice isoforms generate soluble TREM2 species that disrupt long-term potentiation(BMC, 2023-02-20) Moutinho, Miguel; Coronel, Israel; Tsai, Andy P.; Di Prisco, Gonzalo Viana; Pennington, Taylor; Atwood, Brady K.; Puntambekar, Shweta S.; Smith, Daniel C.; Martinez, Pablo; Han, Seonggyun; Lee, Younghee; Lasagna‑Reeves, Cristian A.; Lamb, Bruce T.; Bissel, Stephanie J.; Nho, Kwangsik; Landreth, Gary E.; Anatomy, Cell Biology and Physiology, School of MedicineBackground: TREM2 is a transmembrane receptor expressed by myeloid cells and acts to regulate their immune response. TREM2 governs the response of microglia to amyloid and tau pathologies in the Alzheimer's disease (AD) brain. TREM2 is also present in a soluble form (sTREM2), and its CSF levels fluctuate as a function of AD progression. Analysis of stroke and AD mouse models revealed that sTREM2 proteins bind to neurons, which suggests sTREM2 may act in a non-cell autonomous manner to influence neuronal function. sTREM2 arises from the proteolytic cleavage of the membrane-associated receptor. However, alternatively spliced TREM2 species lacking a transmembrane domain have been postulated to contribute to the pool of sTREM2. Thus, both the source of sTREM2 species and its actions in the brain remain unclear. Methods: The expression of TREM2 isoforms in the AD brain was assessed through the analysis of the Accelerating Medicines Partnership for Alzheimer's Disease Consortium transcriptomics data, as well as qPCR analysis using post-mortem samples of AD patients and of the AD mouse model 5xFAD. TREM2 cleavage and secretion were studied in vitro using HEK-293T and HMC3 cell lines. Synaptic plasticity, as evaluated by induction of LTP in hippocampal brain slices, was employed as a measure of sTREM2 actions. Results: Three distinct TREM2 transcripts, namely ENST00000373113 (TREM2230), which encodes the full-length transmembrane receptor, and the alternatively spliced isoforms ENST00000373122 (TREM2222) and ENST00000338469 (TREM2219), are moderately increased in specific brain regions of patients with AD. We provide experimental evidence that TREM2 alternatively spliced isoforms are translated and secreted as sTREM2. Furthermore, our functional analysis reveals that all sTREM2 species inhibit LTP induction, and this effect is abolished by the GABAA receptor antagonist picrotoxin. Conclusions: TREM2 transcripts can give rise to a heterogeneous pool of sTREM2 which acts to inhibit LTP. These results provide novel insight into the generation, regulation, and function of sTREM2 which fits into the complex biology of TREM2 and its role in human health and disease. Given that sTREM2 levels are linked to AD pathogenesis and progression, our finding that sTREM2 species interfere with LTP furthers our understanding about the role of TREM2 in AD.