- Browse by Author
Browsing by Author "Lange, Ethan M."
Now showing 1 - 5 of 5
Results Per Page
Sort Options
Item Low-frequency and rare exome chip variants associate with fasting glucose and type 2 diabetes susceptibility(Nature Publishing Group, 2015-01-29) Wessel, Jennifer; Chu, Audrey Y.; Willems, Sara M.; Wang, Shuai; Yaghootkar, Hanieh; Brody, Jennifer A.; Dauriz, Marco; Hivert, Marie-France; Raghavan, Sridharan; Lipovich, Leonard; Hidalgo, Bertha; Fox, Keolu; Huffman, Jennifer E.; An, Ping; Lu, Yingchang; Rasmussen-Torvik, Laura J.; Grarup, Niels; Ehm, Margaret G.; Li, Li; Baldridge, Abigail S.; Stančáková, Alena; Abrol, Ravinder; Besse, Céline; Boland, Anne; Bork-Jensen, Jette; Fornage, Myriam; Freitag, Daniel F.; Garcia, Melissa E.; Guo, Xiuqing; Hara, Kazuo; Isaacs, Aaron; Jakobsdottir, Johanna; Lange, Leslie A.; Layton, Jill C.; Li, Man; Hua Zhao, Jing; Meidtner, Karina; Morrison, Alanna C.; Nalls, Mike A.; Peters, Marjolein J.; Sabater-Lleal, Maria; Schurmann, Claudia; Silveira, Angela; Smith, Albert V.; Southam, Lorraine; Stoiber, Marcus H.; Strawbridge, Rona J.; Taylor, Kent D.; Varga, Tibor V.; Allin, Kristine H.; Amin, Najaf; Aponte, Jennifer L.; Aung, Tin; Barbieri, Caterina; Bihlmeyer, Nathan A.; Boehnke, Michael; Bombieri, Cristina; Bowden, Donald W.; Burns, Sean M.; Chen, Yuning; Chen, Yii-DerI; Cheng, Ching-Yu; Correa, Adolfo; Czajkowski, Jacek; Dehghan, Abbas; Ehret, Georg B.; Eiriksdottir, Gudny; Escher, Stefan A.; Farmaki, Aliki-Eleni; Frånberg, Mattias; Gambaro, Giovanni; Giulianini, Franco; Goddard, William A.; Goel, Anuj; Gottesman, Omri; Grove, Megan L.; Gustafsson, Stefan; Hai, Yang; Hallmans, Göran; Heo, Jiyoung; Hoffmann, Per; Ikram, Mohammad K.; Jensen, Richard A.; Jørgensen, Marit E.; Jørgensen, Torben; Karaleftheri, Maria; Khor, Chiea C.; Kirkpatrick, Andrea; Kraja, Aldi T.; Kuusisto, Johanna; Lange, Ethan M.; Lee, I. T.; Lee, Wen-Jane; Leong, Aaron; Liao, Jiemin; Liu, Chunyu; Liu, Yongmei; Lindgren, Cecilia M.; Linneberg, Allan; Malerba, Giovanni; Mamakou, Vasiliki; Marouli, Eirini; Maruthur, Nisa M.; Matchan, Angela; McKean-Cowdin, Roberta; McLeod, Olga; Metcalf, Ginger A.; Mohlke, Karen L.; Muzny, Donna M.; Ntalla, Ioanna; Palmer, Nicholette D.; Pasko, Dorota; Peter, Andreas; Rayner, Nigel W.; Renström, Frida; Rice, Ken; Sala, Cinzia F.; Sennblad, Bengt; Serafetinidis, Ioannis; Smith, Jennifer A.; Soranzo, Nicole; Speliotes, Elizabeth K.; Stahl, Eli A.; Stirrups, Kathleen; Tentolouris, Nikos; Thanopoulou, Anastasia; Torres, Mina; Traglia, Michela; Tsafantakis, Emmanouil; Javad, Sundas; Yanek, Lisa R.; Zengini, Eleni; Becker, Diane M.; Bis, Joshua C.; Brown, James B.; Adrienne Cupples, L.; Hansen, Torben; Ingelsson, Erik; Karter, Andrew J.; Lorenzo, Carlos; Mathias, Rasika A.; Norris, Jill M.; Peloso, Gina M.; Sheu, Wayne H.-H.; Toniolo, Daniela; Vaidya, Dhananjay; Varma, Rohit; Wagenknecht, Lynne E.; Boeing, Heiner; Bottinger, Erwin P.; Dedoussis, George; Deloukas, Panos; Ferrannini, Ele; Franco, Oscar H.; Franks, Paul W.; Gibbs, Richard A.; Gudnason, Vilmundur; Hamsten, Anders; Harris, Tamara B.; Hattersley, Andrew T.; Hayward, Caroline; Hofman, Albert; Jansson, Jan-Håkan; Langenberg, Claudia; Launer, Lenore J.; Levy, Daniel; Oostra, Ben A.; O'Donnell, Christopher J.; O'Rahilly, Stephen; Padmanabhan, Sandosh; Pankow, James S.; Polasek, Ozren; Province, Michael A.; Rich, Stephen S.; Ridker, Paul M.; Rudan, Igor; Schulze, Matthias B.; Smith, Blair H.; Uitterlinden, André G.; Walker, Mark; Watkins, Hugh; Wong, Tien Y.; Zeggini, Eleftheria; Laakso, Markku; Borecki, Ingrid B.; Chasman, Daniel I.; Pedersen, Oluf; Psaty, Bruce M.; Shyong Tai, E.; van Duijn, Cornelia M.; Wareham, Nicholas J.; Waterworth, Dawn M.; Boerwinkle, Eric; Linda Kao, W. H.; Florez, Jose C.; Loos, Ruth J. F.; Wilson, James G.; Frayling, Timothy M.; Siscovick, David S.; Dupuis, Josée; Rotter, Jerome I.; Meigs, James B.; Scott, Robert A.; Goodarzi, Mark O.; Department of Epidemiology, Richard M. Fairbanks School of Public HealthFasting glucose and insulin are intermediate traits for type 2 diabetes. Here we explore the role of coding variation on these traits by analysis of variants on the HumanExome BeadChip in 60,564 non-diabetic individuals and in 16,491 T2D cases and 81,877 controls. We identify a novel association of a low-frequency nonsynonymous SNV in GLP1R (A316T; rs10305492; MAF=1.4%) with lower FG (β=−0.09±0.01 mmol l−1, P=3.4 × 10−12), T2D risk (OR[95%CI]=0.86[0.76–0.96], P=0.010), early insulin secretion (β=−0.07±0.035 pmolinsulin mmolglucose−1, P=0.048), but higher 2-h glucose (β=0.16±0.05 mmol l−1, P=4.3 × 10−4). We identify a gene-based association with FG at G6PC2 (pSKAT=6.8 × 10−6) driven by four rare protein-coding SNVs (H177Y, Y207S, R283X and S324P). We identify rs651007 (MAF=20%) in the first intron of ABO at the putative promoter of an antisense lncRNA, associating with higher FG (β=0.02±0.004 mmol l−1, P=1.3 × 10−8). Our approach identifies novel coding variant associations and extends the allelic spectrum of variation underlying diabetes-related quantitative traits and T2D susceptibility.Item A PheWAS study of a large observational epidemiological cohort of African Americans from the REGARDS study(Biomed Central, 2019-01-31) Zhao, Xueyan; Geng, Xin; Srinivasasainagendra, Vinodh; Chaudhary, Ninad; Judd, Suzanne; Wadley, Virginia; Gutiérrez, Orlando M.; Wang, Henry; Lange, Ethan M.; Lange, Leslie A.; Woo, Daniel; Unverzagt, Frederick W.; Safford, Monika; Cushman, Mary; Limdi, Nita; Quarells, Rakale; Arnett, Donna K.; Irvin, Marguerite R.; Zhi, Degui; Psychiatry, School of MedicineBACKGROUND: Cardiovascular disease, diabetes, and kidney disease are among the leading causes of death and disability worldwide. However, knowledge of genetic determinants of those diseases in African Americans remains limited. RESULTS: In our study, associations between 4956 GWAS catalog reported SNPs and 67 traits were examined among 7726 African Americans from the REasons for Geographic and Racial Differences in Stroke (REGARDS) study, which is focused on identifying factors that increase stroke risk. The prevalent and incident phenotypes studied included inflammation, kidney traits, cardiovascular traits and cognition. Our results validated 29 known associations, of which eight associations were reported for the first time in African Americans. CONCLUSION: Our cross-racial validation of GWAS findings provide additional evidence for the important roles of these loci in the disease process and may help identify genes especially important for future functional validation.Item Rare coding variants and X-linked loci associated with age at menarche(Nature Publishing Group, 2015-08-04) Lunetta, Kathryn L.; Day, Felix R.; Sulem, Patrick; Ruth, Katherine S.; Tung, Joyce Y.; Hinds, David A.; Esko, Tõnu; Elks, Cathy E.; Altmaier, Elisabeth; He, Chunyan; Huffman, Jennifer E.; Mihailov, Evelin; Porcu, Eleonora; Robino, Antonietta; Rose, Lynda M.; Schick, Ursula M.; Stolk, Lisette; Teumer, Alexander; Thompson, Deborah J.; Traglia, Michela; Wang, Carol A.; Yerges-Armstrong, Laura M.; Antoniou, Antonis C.; Barbieri, Caterina; Coviello, Andrea D.; Cucca, Francesco; Demerath, Ellen W.; Dunning, Alison M.; Gandin, Ilaria; Grove, Megan L.; Gudbjartsson, Daniel F.; Hocking, Lynne J.; Hofman, Albert; Huang, Jinyan; Jackson, Rebecca D.; Karasik, David; Kriebel, Jennifer; Lange, Ethan M.; Lange, Leslie A.; Langenberg, Claudia; Li, Xin; Luan, Jian'an; Mägi, Reedik; Morrison, Alanna C.; Padmanabhan, Sandosh; Pirie, Ailith; Polasek, Ozren; Porteous, David; Reiner, Alex P.; Rivadeneira, Fernando; Rudan, Igor; Sala, Cinzia F.; Schlessinger, David; Scott, Robert A.; Stöckl, Doris; Visser, Jenny A.; Völker, Uwe; Vozzi, Diego; Wilson, James G.; Zygmunt, Marek; Boerwinkle, Eric; Buring, Julie E.; Crisponi, Laura; Easton, Douglas F.; Hayward, Caroline; Hu, Frank B.; Liu, Simin; Metspalu, Andres; Pennell, Craig E.; Ridker, Paul M.; Strauch, Konstantin; Streeten, Elizabeth A.; Toniolo, Daniela; Uitterlinden, André G.; Ulivi, Sheila; Völzke, Henry; Wareham, Nicholas J.; Wellons, Melissa; Franceschini, Nora; Chasman, Daniel I.; Thorsteinsdottir, Unnur; Murray, Anna; Stefansson, Kari; Murabito, Joanne M.; Ong, Ken K.; Perry, John R. B.; Department of Epidemiology, Richard M. Fairbanks School of Public HealthMore than 100 loci have been identified for age at menarche by genome-wide association studies; however, collectively these explain only ~3% of the trait variance. Here we test two overlooked sources of variation in 192,974 European ancestry women: low-frequency protein-coding variants and X-chromosome variants. Five missense/nonsense variants (in ALMS1/LAMB2/TNRC6A/TACR3/PRKAG1) are associated with age at menarche (minor allele frequencies 0.08–4.6%; effect sizes 0.08–1.25 years per allele; P<5 × 10−8). In addition, we identify common X-chromosome loci at IGSF1 (rs762080, P=9.4 × 10−13) and FAAH2 (rs5914101, P=4.9 × 10−10). Highlighted genes implicate cellular energy homeostasis, post-transcriptional gene silencing and fatty-acid amide signalling. A frequently reported mutation in TACR3 for idiopathic hypogonatrophic hypogonadism (p.W275X) is associated with 1.25-year-later menarche (P=2.8 × 10−11), illustrating the utility of population studies to estimate the penetrance of reportedly pathogenic mutations. Collectively, these novel variants explain ~0.5% variance, indicating that these overlooked sources of variation do not substantially explain the ‘missing heritability’ of this complex trait.Item Variant-specific inflation factors for assessing population stratification at the phenotypic variance level(Springer Nature, 2021-06-09) Sofer, Tamar; Zheng, Xiuwen; Laurie, Cecelia A.; Gogarten, Stephanie M.; Brody, Jennifer A.; Conomos, Matthew P.; Bis, Joshua C.; Thornton, Timothy A.; Szpiro, Adam; O’Connell, Jeffrey R.; Lange, Ethan M.; Gao, Yan; Cupples, L. Adrienne; Psaty, Bruce M.; NHLBI Trans- Omics for Precision Medicine (TOPMed) Consortium; Rice, Kenneth M.; Medicine, School of MedicineIn modern Whole Genome Sequencing (WGS) epidemiological studies, participant-level data from multiple studies are often pooled and results are obtained from a single analysis. We consider the impact of differential phenotype variances by study, which we term ‘variance stratification’. Unaccounted for, variance stratification can lead to both decreased statistical power, and increased false positives rates, depending on how allele frequencies, sample sizes, and phenotypic variances vary across the studies that are pooled. We develop a procedure to compute variant-specific inflation factors, and show how it can be used for diagnosis of genetic association analyses on pooled individual level data from multiple studies. We describe a WGS-appropriate analysis approach, implemented in freely-available software, which allows study-specific variances and thereby improves performance in practice. We illustrate the variance stratification problem, its solutions, and the proposed diagnostic procedure, in simulations and in data from the Trans-Omics for Precision Medicine Whole Genome Sequencing Program (TOPMed), used in association tests for hemoglobin concentrations and BMI.Item Whole Genome Sequencing Analysis of Body Mass Index Identifies Novel African Ancestry-Specific Risk Allele(medRxiv, 2023-08-22) Zhang, Xinruo; Brody, Jennifer A.; Graff, Mariaelisa; Highland, Heather M.; Chami, Nathalie; Xu, Hanfei; Wang, Zhe; Ferrier, Kendra; Chittoor, Geetha; Josyula, Navya S.; Li, Xihao; Li, Zilin; Allison, Matthew A.; Becker, Diane M.; Bielak, Lawrence F.; Bis, Joshua C.; Boorgula, Meher Preethi; Bowden, Donald W.; Broome, Jai G.; Buth, Erin J.; Carlson, Christopher S.; Chang, Kyong-Mi; Chavan, Sameer; Chiu, Yen-Feng; Chuang, Lee-Ming; Conomos, Matthew P.; DeMeo, Dawn L.; Du, Margaret; Duggirala, Ravindranath; Eng, Celeste; Fohner, Alison E.; Freedman, Barry I.; Garrett, Melanie E.; Guo, Xiuqing; Haiman, Chris; Heavner, Benjamin D.; Hidalgo, Bertha; Hixson, James E.; Ho, Yuk-Lam; Hobbs, Brian D.; Hu, Donglei; Hui, Qin; Hwu, Chii-Min; Jackson, Rebecca D.; Jain, Deepti; Kalyani, Rita R.; Kardia, Sharon L. R.; Kelly, Tanika N.; Lange, Ethan M.; LeNoir, Michael; Li, Changwei; Marchand, Loic Le; McDonald, Merry-Lynn N.; McHugh, Caitlin P.; Morrison, Alanna C.; Naseri, Take; NHLBI Trans-Omics for Precision Medicine (TOPMed) Consortium; O'Connell, Jeffrey; O'Donnell, Christopher J.; Palmer, Nicholette D.; Pankow, James S.; Perry, James A.; Peters, Ulrike; Preuss, Michael H.; Rao, D. C.; Regan, Elizabeth A.; Reupena, Sefuiva M.; Roden, Dan M.; Rodriguez-Santana, Jose; Sitlani, Colleen M.; Smith, Jennifer A.; Tiwari, Hemant K.; Vasan, Ramachandran S.; Wang, Zeyuan; Weeks, Daniel E.; Wessel, Jennifer; Wiggins, Kerri L.; Wilkens, Lynne R.; Wilson, Peter W. F.; Yanek, Lisa R.; Yoneda, Zachary T.; Zhao, Wei; Zöllner, Sebastian; Arnett, Donna K.; Ashley-Koch, Allison E.; Barnes, Kathleen C.; Blangero, John; Boerwinkle, Eric; Burchard, Esteban G.; Carson, April P.; Chasman, Daniel I.; Chen, Yii-Der Ida; Curran, Joanne E.; Fornage, Myriam; Gordeuk, Victor R.; He, Jiang; Heckbert, Susan R.; Hou, Lifang; Irvin, Marguerite R.; Kooperberg, Charles; Minster, Ryan L.; Mitchell, Braxton D.; Nouraie, Mehdi; Psaty, Bruce M.; Raffield, Laura M.; Reiner, Alexander P.; Rich, Stephen S.; Rotter, Jerome I.; Shoemaker, M. Benjamin; Smith, Nicholas L.; Taylor, Kent D.; Telen, Marilyn J.; Weiss, Scott T.; Zhang, Yingze; Heard-Costa, Nancy; Sun, Yan V.; Lin, Xihong; Cupples, L. Adrienne; Lange, Leslie A.; Liu, Ching-Ti; Loos, Ruth J. F.; North, Kari E.; Justice, Anne E.; Biostatistics and Health Data Science, School of MedicineObesity is a major public health crisis associated with high mortality rates. Previous genome-wide association studies (GWAS) investigating body mass index (BMI) have largely relied on imputed data from European individuals. This study leveraged whole-genome sequencing (WGS) data from 88,873 participants from the Trans-Omics for Precision Medicine (TOPMed) Program, of which 51% were of non-European population groups. We discovered 18 BMI-associated signals (P < 5 × 10−9). Notably, we identified and replicated a novel low frequency single nucleotide polymorphism (SNP) in MTMR3 that was common in individuals of African descent. Using a diverse study population, we further identified two novel secondary signals in known BMI loci and pinpointed two likely causal variants in the POC5 and DMD loci. Our work demonstrates the benefits of combining WGS and diverse cohorts in expanding current catalog of variants and genes confer risk for obesity, bringing us one step closer to personalized medicine.