- Browse by Author
Browsing by Author "Lal, Ashwin K."
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item Current Practices in Treating Cardiomyopathy and Heart Failure in Duchenne Muscular Dystrophy (DMD): Understanding Care Practices in Order to Optimize DMD Heart Failure Through ACTION(Springer Nature, 2022) Villa, Chet; Auerbach, Scott R.; Bansal, Neha; Birnbaum, Brian F.; Conway, Jennifer; Esteso, Paul; Gambetta, Katheryn; Hall, E. Kevin; Kaufman, Beth D.; Kirmani, Sonya; Lal, Ashwin K.; Martinez, Hugo R.; Nandi, Deipanjan; O’Connor, Matthew J.; Parent, John J.; Raucci, Frank J.; Shih, Renata; Shugh, Svetlana; Soslow, Jonathan H.; Tunuguntla, Hari; Wittlieb‑Weber, Carol A.; Kinnett, Kathi; Cripe, Linda; Pediatrics, School of MedicineCardiac disease has emerged as a leading cause of mortality in Duchenne muscular dystrophy in the current era. This survey sought to identify the diagnostic and therapeutic approach to DMD among pediatric cardiologists in Advanced Cardiac Therapies Improving Outcomes Network. Pediatric cardiology providers within ACTION (a multi-center pediatric heart failure learning network) were surveyed regarding their approaches to cardiac care in DMD. Thirty-one providers from 23 centers responded. Cardiac MRI and Holter monitoring are routinely obtained, but the frequency of use and indications for ordering these tests varied widely. Angiotensin converting enzyme inhibitor and aldosterone antagonist are generally initiated prior to onset of systolic dysfunction, while the indications for initiating beta-blocker therapy vary more widely. Seventeen (55%) providers report their center has placed an implantable cardioverter defibrillator in at least 1 DMD patient, while 11 providers (35%) would not place an ICD for primary prevention in a DMD patient. Twenty-three providers (74%) would consider placement of a ventricular assist device (VAD) as destination therapy (n = 23, 74%) and three providers (10%) would consider a VAD only as bridge to transplant. Five providers (16%) would not consider VAD at their institution. Cardiac diagnostic and therapeutic approaches vary among ACTION centers, with notable variation present regarding the use of advanced therapies (ICD and VAD). The network is currently working to harmonize medical practices and optimize clinical care in an era of rapidly evolving outcomes and cardiac/skeletal muscle therapies.Item Genetic Causes of Cardiomyopathy in Children: First Results From the Pediatric Cardiomyopathy Genes Study(American Heart Association, 2021-05-04) Ware, Stephanie M.; Wilkinson, James D.; Tariq, Muhammad; Schubert, Jeffrey A.; Sridhar, Arthi; Colan, Steven D.; Shi, Ling; Canter, Charles E.; Hsu, Daphne T.; Webber, Steven A.; Dodd, Debra A.; Everitt, Melanie D.; Kantor, Paul F.; Addonizio, Linda J.; Jefferies, John L.; Rossano, Joseph W.; Pahl, Elfriede; Rusconi, Paolo; Chung, Wendy K.; Lee, Teresa; Towbin, Jeffrey A.; Lal, Ashwin K.; Bhatnagar, Surbhi; Aronow, Bruce; Dexheimer, Phillip J.; Martin, Lisa J.; Miller, Erin M.; Sleeper, Lynn A.; Razoky, Hiedy; Czachor, Jason; Lipshultz, Steven E.; Pediatrics, School of MedicinePediatric cardiomyopathy is a genetically heterogeneous disease with substantial morbidity and mortality. Current guidelines recommend genetic testing in children with hypertrophic, dilated, or restrictive cardiomyopathy, but practice variations exist. Robust data on clinical testing practices and diagnostic yield in children are lacking. This study aimed to identify the genetic causes of cardiomyopathy in children and to investigate clinical genetic testing practices. Methods and Results Children with familial or idiopathic cardiomyopathy were enrolled from 14 institutions in North America. Probands underwent exome sequencing. Rare sequence variants in 37 known cardiomyopathy genes were assessed for pathogenicity using consensus clinical interpretation guidelines. Of the 152 enrolled probands, 41% had a family history of cardiomyopathy. Of 81 (53%) who had undergone clinical genetic testing for cardiomyopathy before enrollment, 39 (48%) had a positive result. Genetic testing rates varied from 0% to 97% between sites. A positive family history and hypertrophic cardiomyopathy subtype were associated with increased likelihood of genetic testing (P=0.005 and P=0.03, respectively). A molecular cause was identified in an additional 21% of the 63 children who did not undergo clinical testing, with positive results identified in both familial and idiopathic cases and across all phenotypic subtypes. Conclusions A definitive molecular genetic diagnosis can be made in a substantial proportion of children for whom the cause and heritable nature of their cardiomyopathy was previously unknown. Practice variations in genetic testing are great and should be reduced. Improvements can be made in comprehensive cardiac screening and predictive genetic testing in first-degree relatives. Overall, our results support use of routine genetic testing in cases of both familial and idiopathic cardiomyopathy.Item Impact of Genetic Testing for Cardiomyopathy on Emotional Well-Being and Family Dynamics: A Study of Parents and Adolescents(American Heart Association, 2021) Ahimaz, Priyanka; Sabatello, Maya; Qian, Min; Wang, Aijin; Miller, Erin M.; Parrott, Ashley; Lal, Ashwin K.; Chatfield, Kathryn C.; Rossano, Joseph W.; Ware, Stephanie M.; Parent, John J.; Kantor, Paul; Yue, Lisa; Wynn, Julia; Lee, Teresa M.; Addonizio, Linda J.; Appelbaum, Paul S.; Chung, Wendy K.; Pediatrics, School of MedicineBackground: Genetic testing is indicated for children with a personal or family history of hereditary cardiomyopathy to determine appropriate management and inform risk stratification for family members. The implications of a positive genetic result for children can potentially impact emotional well-being. Given the nuances of cardiomyopathy genetic testing for minors, this study aimed to understand how parents involve their children in the testing process and investigate the impact of genetic results on family dynamics. Methods: A survey was distributed to participants recruited from the Children's Cardiomyopathy Foundation and 7 North American sites in the Pediatric Cardiomyopathy Registry. The survey explored adolescent and parent participants' emotions upon receiving their/their child's genetic results, parent-child result communication and its impact on family functionality, using the McMaster Family Assessment Device. Results: One hundred sixty-two parents of minors and 48 adolescents who were offered genetic testing for a personal or family history of cardiomyopathy completed the survey. Parents whose child had cardiomyopathy were more likely to disclose positive diagnostic genetic results to their child (P=0.014). Parents with unaffected children and positive predictive testing results were more likely to experience negative emotions about the result (P≤0.001) but also had better family functioning scores than those with negative predictive results (P=0.019). Most adolescents preferred results communicated directly to the child, but parents were divided about whether their child's result should first be released to them or their child. Conclusions: These findings have important considerations for how providers structure genetic services for adolescents and facilitate discussion between parents and their children about results.Item The genetic architecture of pediatric cardiomyopathy(Elsevier, 2022) Ware, Stephanie M.; Bhatnagar, Surbhi; Dexheimer, Phillip J.; Wilkinson, James D.; Sridhar, Arthi; Fan, Xiao; Shen, Yufeng; Tariq, Muhammad; Schubert, Jeffrey A.; Colan, Steven D.; Shi, Ling; Canter, Charles E.; Hsu, Daphne T.; Bansal, Neha; Webber, Steven A.; Everitt, Melanie D.; Kantor, Paul F.; Rossano, Joseph W.; Pahl, Elfriede; Rusconi, Paolo; Lee, Teresa M.; Towbin, Jeffrey A.; Lal, Ashwin K.; Chung, Wendy K.; Miller, Erin M.; Aronow, Bruce; Martin, Lisa J.; Lipshultz, Steven E.; Pediatric Cardiomyopathy Registry Study Group; Pediatrics, School of MedicineTo understand the genetic contribution to primary pediatric cardiomyopathy, we performed exome sequencing in a large cohort of 528 children with cardiomyopathy. Using clinical interpretation guidelines and targeting genes implicated in cardiomyopathy, we identified a genetic cause in 32% of affected individuals. Cardiomyopathy sub-phenotypes differed by ancestry, age at diagnosis, and family history. Infants < 1 year were less likely to have a molecular diagnosis (p < 0.001). Using a discovery set of 1,703 candidate genes and informatic tools, we identified rare and damaging variants in 56% of affected individuals. We see an excess burden of damaging variants in affected individuals as compared to two independent control sets, 1000 Genomes Project (p < 0.001) and SPARK parental controls (p < 1 × 10-16). Cardiomyopathy variant burden remained enriched when stratified by ancestry, variant type, and sub-phenotype, emphasizing the importance of understanding the contribution of these factors to genetic architecture. Enrichment in this discovery candidate gene set suggests multigenic mechanisms underlie sub-phenotype-specific causes and presentations of cardiomyopathy. These results identify important information about the genetic architecture of pediatric cardiomyopathy and support recommendations for clinical genetic testing in children while illustrating differences in genetic architecture by age, ancestry, and sub-phenotype and providing rationale for larger studies to investigate multigenic contributions.