ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Lai, Yen-Chun"

Now showing 1 - 10 of 11
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Albumin Deficiency Reduces Hepatic Steatosis and Improves Glucose Metabolism in a Mouse Model of Diet-Induced Obesity
    (MDPI, 2023-04-25) Abdollahi, Afsoun; Narayanan, Sanjeev K.; Frankovich, Alexandra; Lai, Yen-Chun; Zhang, Yi; Henderson, Gregory C.; Anatomy, Cell Biology and Physiology, School of Medicine
    Serum albumin facilitates the transport of free fatty acids (FFAs) from adipose tissue to other organs. It was not known if impeding this process could protect from hepatic steatosis and metabolic dysfunction in obesity. We tested whether albumin knockout (Alb−/−) mice would exhibit a reduction in plasma FFA concentration, reduced hepatic lipid accumulation, and improved glucoregulation as compared to wild-type (WT) mice. Male homozygous albumin knockout mice (Alb−/−) and WT controls were fed a low-fat diet (LFD) or high-fat diet (HFD). Alb−/− mice exhibited a similar body weight gain and body composition as WT on both diets. Despite HFD-induced obesity, Alb−/− mice were protected from various comorbidities. Compared to WT mice on the HFD, Alb−/− exhibited lower plasma FFA levels, lower blood glucose levels during glucose tolerance and insulin tolerance tests, and lower hepatic steatosis and inflammation. Alb−/− mice on HFD also exhibited elevated expression of multiple genes in the liver and adipose tissues, such as peroxisome proliferator-activated receptor α in both tissues, as well as glucose transporter-4 and adiponectin in adipose tissues. The results indicate that albumin’s FFA transport function may be involved in the development of hepatic lipid accumulation and dysregulated glucose metabolism in obesity.
  • Loading...
    Thumbnail Image
    Item
    Assessing the cancer hypothesis of pulmonary arterial hypertension: the devil is in the detail
    (American Physiological Society, 2020-06-01) Frump, Andrea L.; Lai, Yen-Chun; Lahm, Tim; Anatomy and Cell Biology, School of Medicine
  • Loading...
    Thumbnail Image
    Item
    Current Understanding of Circulating Biomarkers in Pulmonary Hypertension Due to Left Heart Disease
    (Frontiers, 2020-10-07) Todd, Noah; Lai, Yen-Chun; Medicine, School of Medicine
    Pulmonary hypertension due to left heart disease (PH-LHD; Group 2), especially in the setting of heart failure with preserved ejection fraction (HFpEF), is the most frequent cause of PH. Despite its prevalence, no effective therapies for PH-LHD are available at present. This is largely due to the lack of a concise definition for hemodynamic phenotyping, existence of significant gaps in the understanding of the underlying pathology and the impact of associated comorbidities, as well as the absence of specific biomarkers that can aid in the early diagnosis and management of this challenging syndrome. Currently, B-type natriuretic peptide (BNP) and N-terminal proBNP (NT-proBNP) are guideline-recommended biomarkers for the diagnosis and prognosis of heart failure (HF) and PH. Endothelin-1 (ET-1), vascular endothelial growth factor-D (VEGF-D), and microRNA-206 have also been recently identified as new potential circulating biomarkers for patients with PH-LHD. In this review, we aim to present the current state of knowledge of circulating biomarkers that can be used to guide future research toward diagnosis, refine specific patient phenotype, and develop therapeutic approaches for PH-LHD, with a particular focus on PH-HFpEF. Potential circulating biomarkers identified in pre-clinical models of PH-LHD are also summarized here.
  • Loading...
    Thumbnail Image
    Item
    Frataxin deficiency promotes endothelial senescence in pulmonary hypertension
    (The American Society for Clinical Investigation, 2021-06-01) Culley, Miranda K.; Zhao, Jingsi; Tai, Yi Yin; Tang, Ying; Perk, Dror; Negi, Vinny; Yu, Qiujun; Woodcock, Chen-Shan C.; Handen, Adam; Speyer, Gil; Kim, Seungchan; Lai, Yen-Chun; Satoh, Taijyu; Watson, Annie M.M.; Al Aaraj, Yassmin; Sembrat, John; Rojas, Mauricio; Goncharov, Dmitry; Goncharova, Elena A.; Khan, Omar F.; Anderson, Daniel G.; Dahlman, James E.; Gurkar, Aditi U.; Lafyatis, Robert; Fayyaz, Ahmed U.; Redfield, Margaret M.; Gladwin, Mark T.; Rabinovitch, Marlene; Gu, Mingxia; Bertero, Thomas; Chan, Stephen Y.; Medicine, School of Medicine
    The dynamic regulation of endothelial pathophenotypes in pulmonary hypertension (PH) remains undefined. Cellular senescence is linked to PH with intracardiac shunts; however, its regulation across PH subtypes is unknown. Since endothelial deficiency of iron-sulfur (Fe-S) clusters is pathogenic in PH, we hypothesized that a Fe-S biogenesis protein, frataxin (FXN), controls endothelial senescence. An endothelial subpopulation in rodent and patient lungs across PH subtypes exhibited reduced FXN and elevated senescence. In vitro, hypoxic and inflammatory FXN deficiency abrogated activity of endothelial Fe-S–containing polymerases, promoting replication stress, DNA damage response, and senescence. This was also observed in stem cell–derived endothelial cells from Friedreich’s ataxia (FRDA), a genetic disease of FXN deficiency, ataxia, and cardiomyopathy, often with PH. In vivo, FXN deficiency–dependent senescence drove vessel inflammation, remodeling, and PH, whereas pharmacologic removal of senescent cells in Fxn-deficient rodents ameliorated PH. These data offer a model of endothelial biology in PH, where FXN deficiency generates a senescent endothelial subpopulation, promoting vascular inflammatory and proliferative signals in other cells to drive disease. These findings also establish an endothelial etiology for PH in FRDA and left heart disease and support therapeutic development of senolytic drugs, reversing effects of Fe-S deficiency across PH subtypes.
  • Loading...
    Thumbnail Image
    Item
    Genetic Association in the Maintenance of the Mitochondrial Microenvironment and Sperm Capacity
    (Hindawi, 2021-09-04) Thomas, Hwang I. S.; Chen, Ying-Shiuan; Hung, Ching-Han; Urs, Dilip Bhargava Sreerangaraja; Liao, Tien-Ling; Lai, Yen-Chun; Komrskova, Katerina; Postlerová, Pavla; Lin, Yung-Feng; Kao, Shu-Huei; Medicine, School of Medicine
    Sperm motility is one of the major determinants of male fertility. Since sperm need a great deal of energy to support their fast movement by active metabolism, they are thus extremely vulnerable to oxidative damage by the reactive oxygen species (ROS) and other free radicals generated as byproducts in the electron transport chain. The present study is aimed at understanding the impact of a mitochondrial oxidizing/reducing microenvironment in the etiopathology of male infertility. We detected the mitochondrial DNA (mtDNA) 4,977 bp deletion in human sperm. We examined the gene mutation of ATP synthase 6 (ATPase6 m.T8993G) in ATP generation, the gene polymorphisms of uncoupling protein 2 (UCP2, G-866A) in the uncoupling of oxidative phosphorylation, the role of genes such as manganese superoxide dismutase (MnSOD, C47T) and catalase (CAT, C-262T) in the scavenging system in neutralizing reactive oxygen species, and the role of human 8-oxoguanine DNA glycosylase (hOGG1, C1245G) in 8-hydroxy-2'-deoxyguanosine (8-OHdG) repair. We found that the sperm with higher motility were found to have a higher mitochondrial membrane potential and mitochondrial bioenergetics. The genotype frequencies of UCP2 G-866A, MnSOD C47T, and CAT C-262T were found to be significantly different among the fertile subjects, the infertile subjects with more than 50% motility, and the infertile subjects with less than 50% motility. A higher prevalence of the mtDNA 4,977 bp deletion was found in the subjects with impaired sperm motility and fertility. Furthermore, we found that there were significant differences between the occurrences of the mtDNA 4,977 bp deletion and MnSOD (C47T) and hOGG1 (C1245G). In conclusion, the maintenance of the mitochondrial redox microenvironment and genome integrity is an important issue in sperm motility and fertility.
  • Loading...
    Thumbnail Image
    Item
    Metabolic Syndrome Mediates ROS-miR-193b-NFYA-Dependent Downregulation of Soluble Guanylate Cyclase and Contributes to Exercise-Induced Pulmonary Hypertension in Heart Failure With Preserved Ejection Fraction
    (American Heart Association, 2021) Satoh, Taijyu; Wang, Longfei; Espinosa-Diez, Cristina; Wang, Bing; Hahn, Scott A.; Noda, Kentaro; Rochon, Elizabeth R.; Dent, Matthew R.; Levine, Andrea; Baust, Jeffrey J.; Wyman, Samuel; Wu, Yijen L.; Triantafyllou, Georgios A.; Tang, Ying; Reynolds, Mike; Shiva, Sruti; St. Hilaire, Cynthia; Gomez, Delphine; Goncharov, Dmitry A.; Goncharova, Elena A.; Chan, Stephen Y.; Straub, Adam C.; Lai, Yen-Chun; McTiernan, Charles F.; Gladwin, Mark T.; Medicine, School of Medicine
    Background: Many patients with heart failure with preserved ejection fraction have metabolic syndrome and develop exercise-induced pulmonary hypertension (EIPH). Increases in pulmonary vascular resistance in patients with heart failure with preserved ejection fraction portend a poor prognosis; this phenotype is referred to as combined precapillary and postcapillary pulmonary hypertension (CpcPH). Therapeutic trials for EIPH and CpcPH have been disappointing, suggesting the need for strategies that target upstream mechanisms of disease. This work reports novel rat EIPH models and mechanisms of pulmonary vascular dysfunction centered around the transcriptional repression of the soluble guanylate cyclase (sGC) enzyme in pulmonary artery (PA) smooth muscle cells. Methods: We used obese ZSF-1 leptin-receptor knockout rats (heart failure with preserved ejection fraction model), obese ZSF-1 rats treated with SU5416 to stimulate resting pulmonary hypertension (obese+sugen, CpcPH model), and lean ZSF-1 rats (controls). Right and left ventricular hemodynamics were evaluated using implanted catheters during treadmill exercise. PA function was evaluated with magnetic resonance imaging and myography. Overexpression of nuclear factor Y α subunit (NFYA), a transcriptional enhancer of sGC β1 subunit (sGCβ1), was performed by PA delivery of adeno-associated virus 6. Treatment groups received the SGLT2 inhibitor empagliflozin in drinking water. PA smooth muscle cells from rats and humans were cultured with palmitic acid, glucose, and insulin to induce metabolic stress. Results: Obese rats showed normal resting right ventricular systolic pressures, which significantly increased during exercise, modeling EIPH. Obese+sugen rats showed anatomic PA remodeling and developed elevated right ventricular systolic pressure at rest, which was exacerbated with exercise, modeling CpcPH. Myography and magnetic resonance imaging during dobutamine challenge revealed PA functional impairment of both obese groups. PAs of obese rats produced reactive oxygen species and decreased sGCβ1 expression. Mechanistically, cultured PA smooth muscle cells from obese rats and humans with diabetes or treated with palmitic acid, glucose, and insulin showed increased mitochondrial reactive oxygen species, which enhanced miR-193b-dependent RNA degradation of nuclear factor Y α subunit (NFYA), resulting in decreased sGCβ1-cGMP signaling. Forced NYFA expression by adeno-associated virus 6 delivery increased sGCβ1 levels and improved exercise pulmonary hypertension in obese+sugen rats. Treatment of obese+sugen rats with empagliflozin improved metabolic syndrome, reduced mitochondrial reactive oxygen species and miR-193b levels, restored NFYA/sGC activity, and prevented EIPH. Conclusions: In heart failure with preserved ejection fraction and CpcPH models, metabolic syndrome contributes to pulmonary vascular dysfunction and EIPH through enhanced reactive oxygen species and miR-193b expression, which downregulates NFYA-dependent sGCβ1 expression. Adeno-associated virus-mediated NFYA overexpression and SGLT2 inhibition restore NFYA-sGCβ1-cGMP signaling and ameliorate EIPH.
  • Loading...
    Thumbnail Image
    Item
    Plasma Proteomics Identifies B2M as a Regulator of Pulmonary Hypertension in Heart Failure With Preserved Ejection Fraction
    (Wolters Kluwer, 2024) Jheng, Jia-Rong; DesJardin, Jacqueline T.; Chen, Yi-Yun; Huot, Joshua R.; Bai, Yang; Cook, Todd; Hibbard, Lainey M.; Rupp, Jennifer M.; Fisher, Amanda; Zhang, Yingze; Duarte, Julio D.; Desai, Ankit A.; Machado, Roberto F.; Simon, Marc A.; Lai, Yen-Chun; Medicine, School of Medicine
    Background: Pulmonary hypertension (PH) represents an important phenotype in heart failure with preserved ejection fraction (HFpEF). However, management of PH-HFpEF is challenging because mechanisms involved in the regulation of PH-HFpEF remain unclear. Methods: We used a mass spectrometry-based comparative plasma proteomics approach as a sensitive and comprehensive hypothesis-generating discovery technique to profile proteins in patients with PH-HFpEF and control subjects. We then validated and investigated the role of one of the identified proteins using in vitro cell cultures, in vivo animal models, and independent cohort of human samples. Results: Plasma proteomics identified high protein abundance levels of B2M (β2-microglobulin) in patients with PH-HFpEF. Interestingly, both circulating and skeletal muscle levels of B2M were increased in mice with skeletal muscle SIRT3 (sirtuin-3) deficiency or high-fat diet-induced PH-HFpEF. Plasma and muscle biopsies from a validation cohort of PH-HFpEF patients were found to have increased B2M levels, which positively correlated with disease severity, especially pulmonary capillary wedge pressure and right atrial pressure at rest. Not only did the administration of exogenous B2M promote migration/proliferation in pulmonary arterial vascular endothelial cells but it also increased PCNA (proliferating cell nuclear antigen) expression and cell proliferation in pulmonary arterial vascular smooth muscle cells. Finally, B2m deletion improved glucose intolerance, reduced pulmonary vascular remodeling, lowered PH, and attenuated RV hypertrophy in mice with high-fat diet-induced PH-HFpEF. Conclusions: Patients with PH-HFpEF display higher circulating and skeletal muscle expression levels of B2M, the magnitude of which correlates with disease severity. Our findings also reveal a previously unknown pathogenic role of B2M in the regulation of pulmonary vascular proliferative remodeling and PH-HFpEF. These data suggest that circulating and skeletal muscle B2M can be promising targets for the management of PH-HFpEF.
  • Loading...
    Thumbnail Image
    Item
    Recent advancements in pulmonary arterial hypertension and right heart failure research: overview of selected abstracts from ATS2020 and emerging COVID-19 research
    (Sage, 2021-07) Potus, Francois; Frump, Andrea L.; Umar, Soban; Vanderpool, Rebecca R.; Al Ghouleh, Imad; Lai, Yen-Chun; Medicine, School of Medicine
    Each year the American Thoracic Society (ATS) Conference brings together scientists who conduct basic, translational and clinical research to present on the recent advances in the field of respirology. Due to the Coronavirus Disease of 2019 (COVID-19) pandemic, the ATS2020 Conference was held online in a series of virtual meetings. In this review, we focus on the breakthroughs in pulmonary hypertension research. We have selected 11 of the best basic science abstracts which were presented at the ATS2020 Assembly on Pulmonary Circulation mini-symposium “What’s New in Pulmonary Arterial Hypertension (PAH) and Right Ventricular (RV) Signaling: Lessons from the Best Abstracts,” reflecting the current state of the art and associated challenges in PH. Particular emphasis is placed on understanding the mechanisms underlying RV failure, the regulation of inflammation, and the novel therapeutic targets that emerged from preclinical research. The pathologic interactions between pulmonary hypertension, right ventricular function and COVID-19 are also discussed.
  • Loading...
    Thumbnail Image
    Item
    Redox regulation of metabolic syndrome: recent developments in skeletal muscle insulin resistance and non-alcoholic fatty liver disease (NAFLD)
    (Elsevier, 2019-06-01) Yeo, Yee Hui; Lai, Yen-Chun; Medicine, School of Medicine
    Several new discoveries over the past decade have shown that metabolic syndrome, a cluster of metabolic disorders, including increased visceral obesity, hyperglycemia, hypertension, dyslipidemia and low HDL-cholesterol, is commonly associated with skeletal muscle insulin resistance. More recently, non-alcoholic fatty liver disease (NAFLD) was recognized as an additional condition that is strongly associated with features of metabolic syndrome. While the pathogenesis of skeletal muscle insulin resistance and fatty liver is multifactorial, the role of dysregulated redox signaling has been clearly demonstrated in the regulation of skeletal muscle insulin resistance and NAFLD. In this review, we aim to provide recent updates on redox regulation with respect to (a) pro-oxidant enzymes (e.g. NAPDH oxidase and xanthine oxidase); (b) mitochondrial dysfunction; (c) endoplasmic reticulum (ER) stress; (d) iron metabolism derangements; and (e) gut-skeletal muscle or gut-liver connection in the development of skeletal muscle insulin resistance and NAFLD. Furthermore, we discuss promising new therapeutic strategies targeting redox regulation currently under investigation for the treatment of skeletal muscle insulin resistance and NAFLD.
  • Loading...
    Thumbnail Image
    Item
    Relaxin Inhibits Ventricular Arrhythmia and Asystole in Rats With Pulmonary Arterial Hypertension
    (Frontiers Media, 2021-07-06) Martin, Brian; Vanderpool, Rebecca R.; Henry, Brian L.; Palma, Joshua B.; Gabris, Beth; Lai, Yen-Chun; Hu, Jian; Tofovic, Stevan P.; Reddy, Rajiv P.; Mora, Ana L.; Gladwin, Mark T.; Romero, Guillermo; Salama, Guy; Medicine, School of Medicine
    Pulmonary arterial hypertension (PAH) leads to right ventricular cardiomyopathy and cardiac dysfunctions where in the clinical setting, cardiac arrest is the likely cause of death, in ~70% of PAH patients. We investigated the cardiac phenotype of PAH hearts and tested the hypothesis that the insulin-like hormone, Relaxin could prevent maladaptive cardiac remodeling and protect against cardiac dysfunctions in a PAH animal model. PAH was induced in rats with sugen (20 mg/kg), hypoxia then normoxia (3-weeks/each); relaxin (RLX = 0, 30 or 400 μg/kg/day, n ≥ 6/group) was delivered subcutaneously (6-weeks) with implanted osmotic mini-pumps. Right ventricle (RV) hemodynamics and Doppler-flow measurements were followed by cardiac isolation, optical mapping, and arrhythmia phenotype. Sugen-hypoxia (SuHx) treated rats developed PAH characterized by higher RV systolic pressures (50 ± 19 vs. 22 ± 5 mmHg), hypertrophy, reduced stroke volume, ventricular fibrillation (VF) (n = 6/11) and bradycardia/arrest (n = 5/11); both cardiac phenotypes were suppressed with dithiothreitol (DTT = 1 mM) (n = 0/2/group) or RLX (low or high dose, n = 0/6/group). PAH hearts developed increased fibrosis that was reversed by RLX-HD, but not RLX-LD. Relaxin decreased Nrf2 and glutathione transferases but not glutathione-reductase. High-dose RLX improved pulmonary arterial compliance (measured by Doppler flow), suppressed VF even after burst-pacing, n = 2/6). Relaxin suppressed VF and asystole through electrical remodeling and by reversing thiol oxidative stress. For the first time, we showed two cardiac phenotypes in PAH animals and their prevention by RLX. Relaxin may modulate maladaptive cardiac remodeling in PAH and protect against arrhythmia and cardiac arrest.
  • «
  • 1 (current)
  • 2
  • »
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University