ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Lai, Xianyin"

Now showing 1 - 10 of 28
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    A reproducible method to enrich membrane proteins with high-purity and high-yield for an LC-MS/MS approach in quantitative membrane proteomics
    (Wiley, 2013) Lai, Xianyin; Cellular and Integrative Physiology, School of Medicine
    The proportionately low abundance of membrane proteins hampers their proteomic analysis, especially for a quantitative LC-MS/MS approach. To overcome this limitation, a method was developed that consists of one cell disruption step in a hypotonic reagent using liquid nitrogen, one isolation step using a low speed centrifugation, and three wash steps using high speed centrifugation. Pellets contained plasma, nuclear, and mitochondrial membranes, including their integral, peripheral, and anchored membrane proteins. The reproducibility of this method was verified by protein assay of four separate experiments with a CV of 7.7%, and by comparative LC-MS/MS label-free quantification of individual proteins between two experiments with 99% of the quantified proteins having a CV ≤30%. Western blot and LC-MS/MS results of markers for cytoplasm, nucleus, mitochondria, and their membranes indicated that the enriched membrane fraction was highly pure by the absence of, or presence of trace amounts of, nonmembrane marker proteins. The average yield of membrane proteins was 237 μg/10 million HT29-MTX cells. LC-MS/MS analysis of the membrane-enriched sample resulted in the identification of 2597 protein groups. In summary, the developed method is reproducible, produces a highly pure membrane fraction, and generates a high yield of membrane proteins.
  • Loading...
    Thumbnail Image
    Item
    Bioinformatic Analysis of Differential Protein Expression in Calu-3 Cells Exposed to Carbon Nanotubes
    (MDPI, 2013-10-24) Li, Pin; Lai, Xianyin; Witzmann, Frank A.; Blazer-Yost, Bonnie L.; Biology, School of Science
    Carbon nanomaterials are widely produced and used in industry, medicine and scientific research. To examine the impact of exposure to nanoparticles on human health, the human airway epithelial cell line, Calu-3, was used to evaluate changes in the cellular proteome that could account for alterations in cellular function of airway epithelia after 24 hexposure to 10 μg/mL and 100 ng/mLof two common carbon nanoparticles, single- and multi-wall carbon nanotubes (SWCNT, MWCNT). After exposure to the nanoparticles, label-free quantitative mass spectrometry (LFQMS) was used to study the differential protein expression. Ingenuity Pathway Analysis (IPA) was used to conduct a bioinformaticanalysis of proteins identified in LFQMS. Interestingly, after exposure to ahigh concentration (10 μg/mL; 0.4 μg/cm2) of MWCNT or SWCNT, only 8 and 13 proteins, respectively, exhibited changes in abundance. In contrast, the abundance of hundreds of proteins was altered in response to a low concentration (100 ng/mL; 4 ng/cm2) of either CNT. Of the 281 and 282 proteins that were significantly altered in response to MWCNT or SWCNT respectively, 231 proteins were the same. Bioinformatic analyses found that the proteins in common to both nanotubes occurred within the cellular functions of cell death and survival, cell-to-cell signaling and interaction, cellular assembly and organization, cellular growth and proliferation, infectious disease, molecular transport and protein synthesis. The majority of the protein changes represent a decrease in amount suggesting a general stress response to protect cells. The STRING database was used to analyze the various functional protein networks. Interestingly, some proteins like cadherin 1 (CDH1), signal transducer and activator of transcription 1 (STAT1), junction plakoglobin (JUP), and apoptosis-associated speck-like protein containing a CARD (PYCARD), appear in several functional categories and tend to be in the center of the networks. This central positioning suggests they may play important roles in multiple cellular functions and activities that are altered in response to carbon nanotube exposure.
  • Loading...
    Thumbnail Image
    Item
    Calcium/Calmodulin-Dependent Protein Kinase II Regulation of IKs during Sustained Beta-Adrenergic Receptor Stimulation
    (Elsevier, 2018) Shugg, Tyler; Johnson, Derrick E.; Shao, Minghai; Lai, Xianyin; Witzmann, Frank; Cummins, Theodore R.; Rubart-Von der Lohe, Michael; Hudmon, Andy; Overholser, Brian R.; Biochemistry and Molecular Biology, School of Medicine
    Background Sustained β-adrenergic receptor (β-AR) stimulation causes pathophysiological changes during heart failure (HF), including inhibition of the slow component of the delayed rectifier potassium current (IKs). Aberrant calcium handling, including increased activation of calcium/calmodulin-dependent protein kinase II (CaMKII), contributes to arrhythmia development during HF. Objective The purpose of this study was to investigate CaMKII regulation of KCNQ1 (pore-forming subunit of IKs) during sustained β-AR stimulation and associated functional implications on IKs. Methods KCNQ1 phosphorylation was assessed using LCMS/MS after sustained β-AR stimulation with isoproterenol (ISO). Peptide fragments corresponding to KCNQ1 residues were synthesized to identify CaMKII phosphorylation at the identified sites. Dephosphorylated (alanine) and phosphorylated (aspartic acid) mimics were introduced at identified residues. Whole-cell, voltage-clamp experiments were performed in human endothelial kidney 293 cells coexpressing wild-type or mutant KCNQ1 and KCNE1 (auxiliary subunit) during ISO treatment or lentiviral δCaMKII overexpression. Results Novel KCNQ1 carboxy-terminal sites were identified with enhanced phosphorylation during sustained β-AR stimulation at T482 and S484. S484 peptides demonstrated the strongest δCaMKII phosphorylation. Sustained β-AR stimulation reduced IKs activation (P = .02 vs control) similar to the phosphorylated mimic (P = .62 vs sustained β-AR). Individual phosphorylated mimics at S484 (P = .04) but not at T482 (P = .17) reduced IKs function. Treatment with CN21 (CaMKII inhibitor) reversed the reductions in IKs vs CN21-Alanine control (P < .01). δCaMKII overexpression reduced IKs similar to ISO treatment in wild type (P < .01) but not in the dephosphorylated S484 mimic (P = .99). Conclusion CaMKII regulates KCNQ1 at S484 during sustained β-AR stimulation to inhibit IKs. The ability of CaMKII to inhibit IKs may contribute to arrhythmogenicity during HF.
  • Loading...
    Thumbnail Image
    Item
    Comparative Proteomics and Biological Effects of Functionalized Carbon Nanotubes in Intestinal Cell Co-culture
    (Office of the Vice Chancellor for Research, 2011-04-08) Lai, Xianyin; Fang, Meixian; Fears, Sharry; Mitra, Somenath; Ringham, Heather; Witzmann, Frank A.
    “Carbon nanotubes (CNTs) possess unique electrical, mechanical, and thermal properties, with potential applications in the electronics, catalysts, polymer composites, aerospace, and other industries. CNTs are also being developed for a broad range of applications in biomedicine, including oral drug delivery. Functionalized, water dispersible CNTs (fCNTS) can be expected to enter the digestive tract and exert biological effects on its barrier epithelial cells. To characterize these effects, we developed an in vitro model of the large intestinal tract using a coculture of Caco-2 (75%) and HT29-MTX (25%, mucus secreting) cells, and exposed these cells to functionalized single-walled (SWNT) and multi-walled (MWNT) carbon nanotubes at realistic concentrations (500 pg/mL and 10 µg/mL; 48 h). Protein expression was analyzed using our recently developed label-free quantitative mass spectrometry (LFQMS) platform, IdentiQuantXL™, while typical toxicological endpoint assays were used to characterize various cellular responses. LFQMS identified 5,007 unique protein database entries, from which 4,200 proteins were considered qualified for quantitation. These proteins represented 1,978 protein groups (containing isoforms, splice-variants, etc). Differences in expression were calculated by ANOVA (P<0.001) and post hoc Holm Sidak comparisons (P<0.05). fCNT significantly altered protein expression in a moderate number of proteins, the extent and type of which were fCNT specific. Only 13 proteins were universally altered by all exposures (except 500 pg/mL COOHSWNT which had no effect), and these represent a broad range of cellular functions. Bioinformatic analysis using the Gene Ontology Database and Ingenuity Pathway Analysis revealed statistically significant protein associations with a broad range of functional networks and signaling/metabolic pathways. Again, little overlap between fCNT was observed. None of the exposures was associated with overt toxicity or proinflammatory response. The results suggest that significant biological effects result from fCNT exposure, responses that are specific to CNT-type and dose, but occurring in the absence of toxicity or irritation. Supported by NIEHS RC2ES018810.”
  • Loading...
    Thumbnail Image
    Item
    Comparison of Nanotube–Protein Corona Composition in Cell Culture Media
    (Wiley, 2013) Shannahan, Jonathan H.; Brown, Jared M.; Chen, Ran; Ke, Pu Chun; Lai, Xianyin; Mitra, Somenath; Witzmann, Frank A.; Cellular and Integrative Physiology, School of Medicine
    In biological environments, nanomaterials associate with proteins forming a protein corona (PC). The PC may alter the nanomaterial's pharmacokinetics and pharmacodynamics, thereby influencing toxicity. Using a label-free mass spectrometry-based proteomics approach, the composition of the PC is examined for a set of nanotubes (NTs) including unmodified and carboxylated single- (SWCNT) and multi-walled carbon nanotubes (MWCNT), polyvinylpyrrolidone (PVP)-coated MWCNT (MWCNT-PVP), and nanoclay. NTs are incubated for 1 h in simulated cell culture conditions, then washed, resuspended in PBS, and assessed by liquid chromatography-tandem mass spectrometry (LC-MS/MS) for their associated PC. To determine those attributes that influence PC formation, the NTs are extensively characterized. NTs had negative zeta potentials in water (SWCNT-COOH < MWCNT-COOH < unmodified NTs) while carboxylation increases their hydrodynamic sizes. All NTs are also found to associate a common subset of proteins including albumin, titin, and apolipoproteins. SWCNT-COOH and MWCNT-COOH are found to bind the greatest number of proteins (181 and 133 respectively) compared to unmodified NTs (<100), suggesting covalent binding to protein amines. Modified NTs bind a number of unique proteins compared to unmodified NTs, implying hydrogen bonding and electrostatic interactions are involved in PC formation. PVP-coating of MWCNT did not influence PC composition, further reinforcing the possibility of hydrogen bonding and electrostatic interactions. No relationships are found between PC composition and corresponding isoelectric point, hydropathy, or aliphatic index, implying minimal roles of hydrophobic interaction and pi-stacking.
  • Loading...
    Thumbnail Image
    Item
    Delineation of Molecular Pathways Involved in Cardiomyopathies Caused by Troponin T Mutations
    (American Society for Biochemistry and Molecular Biology, 2016-06) Gilda, Jennifer E.; Lai, Xianyin; Witzmann, Frank A.; Gomes, Aldrin V.; Cellular and Integrative Physiology, School of Medicine
    Familial hypertrophic cardiomyopathy (FHC) is associated with mild to severe cardiac problems and is the leading cause of sudden death in young people and athletes. Although the genetic basis for FHC is well-established, the molecular mechanisms that ultimately lead to cardiac dysfunction are not well understood. To obtain important insights into the molecular mechanism(s) involved in FHC, hearts from two FHC troponin T models (Ile79Asn [I79N] and Arg278Cys [R278C]) were investigated using label-free proteomics and metabolomics. Mutations in troponin T are the third most common cause of FHC, and the I79N mutation is associated with a high risk of sudden cardiac death. Most FHC-causing mutations, including I79N, increase the Ca(2+) sensitivity of the myofilament; however, the R278C mutation does not alter Ca(2+) sensitivity and is associated with a better prognosis than most FHC mutations. Out of more than 1200 identified proteins, 53 and 76 proteins were differentially expressed in I79N and R278C hearts, respectively, when compared with wild-type hearts. Interestingly, more than 400 proteins were differentially expressed when the I79N and R278C hearts were directly compared. The three major pathways affected in I79N hearts relative to R278C and wild-type hearts were the ubiquitin-proteasome system, antioxidant systems, and energy production pathways. Further investigation of the proteasome system using Western blotting and activity assays showed that proteasome dysfunction occurs in I79N hearts. Metabolomic results corroborate the proteomic data and suggest the glycolytic, citric acid, and electron transport chain pathways are important pathways that are altered in I79N hearts relative to R278C or wild-type hearts. Our findings suggest that impaired energy production and protein degradation dysfunction are important mechanisms in FHCs associated with poor prognosis and that cardiac hypertrophy is not likely needed for a switch from fatty acid to glucose metabolism.
  • Loading...
    Thumbnail Image
    Item
    Development, validation, and comparison of four methods to simultaneously quantify L-arginine, citrulline, and ornithine in human plasma using hydrophilic interaction liquid chromatography and electrospray tandem mass spectrometry
    (Elsevier, 2015-11) Lai, Xianyin; Kline, Jeffrey A.; Wang, Mu; Department of Biochemistry and Molecular Biology, IU School of Medicine
    To understand the role of l-arginine depletion in impaired nitric oxide synthesis in disease, it is important to simultaneously quantify arginine, citrulline, and ornithine in the plasma. Because the three amino acids are endogenous analytes, true blank matrix for them is not available. It is necessary and valuable to compare the performance of different approaches due to lack of regulatory clarity for validation. A two-step sample preparation method using methanol as protein precipitation reagent was developed in this study is used for sample preparation. Because true blank matrix for endogenous analytes is not available, water as blank matrix, 1% BSA in PBS as blank matrix, surrogate analyte, and background subtraction were designed to establish successful quantification methods. Four methods to simultaneously quantify arginine, citrulline, and ornithine in human plasma using hydrophilic interaction liquid chromatography and electrospray tandem mass spectrometry were developed, validated, and compared. The developed two-step sample preparation method using methanol as protein precipitation reagent in this study needs less time and provides higher recovery comparing with other approaches. Three of the four methods, water as blank matrix, 1% BSA in PBS as blank matrix, and surrogate analyte, have been successful in fulfilling all the criteria, while background subtraction has failed. Results of the measured concentrations in 97 human plasma samples using the three methods show that the difference between any two methods or among the three methods presents 100% of samples with less than 20% for all the three amino acids and majority of them are under 10%. The developed two-step sample preparation method using methanol as protein precipitation reagent is simple and convenient. Three of the four methods are fully validated and the validation is successful. The BSA functioned effectively as a blank matrix for these three amino acids, considering cost, data quality, matrix similarity, and practicality.
  • Loading...
    Thumbnail Image
    Item
    Distinctive and pervasive alterations in aqueous humor protein composition following different types of glaucoma surgery
    (Molecular Vision, 2015) Rosenfeld, Cyril; Price, Marianne O.; Lai, Xianyin; Witzmann, Frank A.; Price, Francis W.; Department of Biochemistry and Molecular Biology, IU School of Medicine
    PURPOSE: To investigate whether specific glaucoma surgeries are associated with differences in aqueous humor protein concentrations compared to eyes without filters. METHODS: In this cross-sectional study, aqueous humor samples were prospectively collected from control subjects who underwent routine cataract surgery (n=14) and from patients who had different glaucoma filters: Baerveldt aqueous shunt (n=6), Ahmed aqueous shunt (n=6), trabeculectomy (n=5), and Ex-Press trabeculectomy (n=3). Total protein concentrations were determined with Bradford assay. Tryptic digests were analyzed with liquid chromatography-tandem mass spectrometry (LC-MS/MS). Proteins were identified with high confidence using stringent criteria and were quantitatively compared with a label-free platform. Relative protein quantities were compared across groups with ANOVA. Post hoc pair-wise comparisons were adjusted for multiple comparisons. RESULTS: Compared to the control eyes, the aqueous humor protein concentration was increased approximately tenfold in the Ahmed and Baerveldt eyes and fivefold in the trabeculectomy and Ex-Press eyes. Overall, 718 unique proteins, splice variants, or isoforms were identified. No differences in the protein concentrations were detected between the Baerveldt and Ahmed groups. Likewise, the trabeculectomy and Ex-Press groups were remarkably similar. Therefore, the aqueous shunt groups were pooled, and the trabeculectomy groups were pooled for a three-way comparison with the controls. More than 500 proteins differed significantly in relative abundance (ANOVA p<0.01) among the control, aqueous shunt, and trabeculectomy groups. Functional analyses suggested these alterations in relative protein abundance affected dozens of signaling pathways. CONCLUSIONS: Different glaucoma surgical procedures were associated with marked increases in the aqueous humor protein concentration and distinctive changes in the relative abundance of numerous proteins involved in multiple signaling pathways.
  • Loading...
    Thumbnail Image
    Item
    Endothelial disruptive proinflammatory effects of nicotine and e-cigarette vapor exposures
    (American Physiological Society, 2015-07-15) Schweitzer, Kelly S.; Chen, Steven X.; Law, Sarah; Van Demark, Mary; Poirier, Christophe; Justice, Matthew J.; Hubbard, Walter C.; Kim, Elena S.; Lai, Xianyin; Wang, Mu; Kranz, William D.; Carroll, Clinton J.; Ray, Bruce D.; Bittman, Robert; Goodpaster, John V.; Petrache, Irina; Department of Biochemistry & Molecular Biology, IU School of Medicine
    The increased use of inhaled nicotine via e-cigarettes has unknown risks to lung health. Having previously shown that cigarette smoke (CS) extract disrupts the lung microvasculature barrier function by endothelial cell activation and cytoskeletal rearrangement, we investigated the contribution of nicotine in CS or e-cigarettes (e-Cig) to lung endothelial injury. Primary lung microvascular endothelial cells were exposed to nicotine, e-Cig solution, or condensed e-Cig vapor (1-20 mM nicotine) or to nicotine-free CS extract or e-Cig solutions. Compared with nicotine-containing extract, nicotine free-CS extract (10-20%) caused significantly less endothelial permeability as measured with electric cell-substrate impedance sensing. Nicotine exposures triggered dose-dependent loss of endothelial barrier in cultured cell monolayers and rapidly increased lung inflammation and oxidative stress in mice. The endothelial barrier disruptive effects were associated with increased intracellular ceramides, p38 MAPK activation, and myosin light chain (MLC) phosphorylation, and was critically mediated by Rho-activated kinase via inhibition of MLC-phosphatase unit MYPT1. Although nicotine at sufficient concentrations to cause endothelial barrier loss did not trigger cell necrosis, it markedly inhibited cell proliferation. Augmentation of sphingosine-1-phosphate (S1P) signaling via S1P1 improved both endothelial cell proliferation and barrier function during nicotine exposures. Nicotine-independent effects of e-Cig solutions were noted, which may be attributable to acrolein, detected along with propylene glycol, glycerol, and nicotine by NMR, mass spectrometry, and gas chromatography, in both e-Cig solutions and vapor. These results suggest that soluble components of e-Cig, including nicotine, cause dose-dependent loss of lung endothelial barrier function, which is associated with oxidative stress and brisk inflammation.
  • Loading...
    Thumbnail Image
    Item
    Ethanol Exposure Alters Protein Expression in a Mouse Model of Fetal Alcohol Spectrum Disorders
    (Hindawi, 2012) Mason, Stephen; Anthony, Bruce; Lai, Xianyin; Ringham, Heather N.; Wang, Mu; Witzmann, Frank A.; You, Jin-Sam; Zhou, Feng C.; Anatomy, Cell Biology and Physiology, School of Medicine
    Alcohol exposure during development can result in variable growth retardation and facial dysmorphology known as fetal alcohol spectrum disorders. Although the mechanisms underlying the disorder are not fully understood, recent progress has been made that alcohol induces aberrant changes in gene expression and in the epigenome of embryos. To inform the gene and epigenetic changes in alcohol-induced teratology, we used whole-embryo culture to identify the alcohol-signature protein profile of neurulating C6 mice. Alcohol-treated and control cultures were homogenized, isoelectrically focused, and loaded for 2D gel electrophoresis. Stained gels were cross matched with analytical software. We identified 40 differentially expressed protein spots (P < 0.01), and 9 spots were selected for LC/MS-MS identification. Misregulated proteins include serotransferrin, triosephosphate isomerase and ubiquitin-conjugating enzyme E2 N. Misregulation of serotransferrin and triosephosphate isomerase was confirmed with immunologic analysis. Alteration of proteins with roles in cellular function, cell cycle, and the ubiquitin-proteasome pathway was induced by alcohol. Several misregulated proteins interact with effectors of the NF-κB and Myc transcription factor cascades. Using a whole-embryo culture, we have identified misregulated proteins known to be involved in nervous system development and function.
  • «
  • 1 (current)
  • 2
  • 3
  • »
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University