- Browse by Author
Browsing by Author "Krishnan, Preethi"
Now showing 1 - 10 of 11
Results Per Page
Sort Options
Item A discovery-based proteomics approach identifies protein disulphide isomerase (PDIA1) as a biomarker of β cell stress in type 1 diabetes(Elsevier, 2023) Syed, Farooq; Singhal, Divya; Raedschelders, Koen; Krishnan, Preethi; Bone, Robert N.; McLaughlin, Madeline R.; Van Eyk, Jennifer E.; Mirmira, Raghavendra G.; Yang, Mei-Ling; Mamula, Mark J.; Wu, Huanmei; Liu, Xiaowen; Evans-Molina, Carmella; Pediatrics, School of MedicineBackground: Stress responses within the β cell have been linked with both increased β cell death and accelerated immune activation in type 1 diabetes (T1D). At present, information on the timing and scope of these responses as well as disease-related changes in islet β cell protein expression during T1D development is lacking. Methods: Data independent acquisition-mass spectrometry was performed on islets collected longitudinally from NOD mice and NOD-SCID mice rendered diabetic through T cell adoptive transfer. Findings: In islets collected from female NOD mice at 10, 12, and 14 weeks of age, we found a time-restricted upregulation of proteins involved in stress mitigation and maintenance of β cell function, followed by loss of expression of protective proteins that heralded diabetes onset. EIF2 signalling and the unfolded protein response, mTOR signalling, mitochondrial function, and oxidative phosphorylation were commonly modulated pathways in both NOD mice and NOD-SCID mice rendered acutely diabetic by T cell adoptive transfer. Protein disulphide isomerase A1 (PDIA1) was upregulated in NOD islets and pancreatic sections from human organ donors with autoantibody positivity or T1D. Moreover, PDIA1 plasma levels were increased in pre-diabetic NOD mice and in the serum of children with recent-onset T1D compared to non-diabetic controls. Interpretation: We identified a core set of modulated pathways across distinct mouse models of T1D and identified PDIA1 as a potential human biomarker of β cell stress in T1D.Item A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes(American Diabetes Association, 2020-11) Bone, Robert N.; Oyebamiji, Olufunmilola; Talware, Sayali; Selvaraj, Sharmila; Krishnan, Preethi; Syed, Farooq; Wu, Huanmei; Evans-Molina, Carmella; Pediatrics, School of MedicineThe Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We used an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray data sets generated using human islets from donors with diabetes and islets where type 1 (T1D) and type 2 (T2D) diabetes had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated. In parallel, we generated an RNA-sequencing data set from human islets treated with brefeldin A (BFA), a known GA stress inducer. Overlapping the T1D and T2D groups with the BFA data set, we identified 120 and 204 differentially expressed genes, respectively. In both the T1D and T2D models, pathway analyses revealed that the top pathways were associated with GA integrity, organization, and trafficking. Quantitative RT-PCR was used to validate a common signature of GA stress that included ATF3, ARF4, CREB3, and COG6 Taken together, these data indicate that GA-associated genes are dysregulated in diabetes and identify putative markers of β-cell GA stress.Item Distinct functions and transcriptional signatures in orally induced regulatory T cell populations(Frontiers Media, 2023-10-26) Biswas, Moanaro; So, Kaman; Bertolini, Thais B.; Krishnan, Preethi; Rana, Jyoti; Muñoz-Melero, Maite; Syed, Farooq; Kumar, Sandeep R. P.; Gao, Hongyu; Xuei, Xiaoling; Terhorst, Cox; Daniell, Henry; Cao, Sha; Herzog, Roland W.; Pediatrics, School of MedicineOral administration of antigen induces regulatory T cells (Treg) that can not only control local immune responses in the small intestine, but also traffic to the central immune system to deliver systemic suppression. Employing murine models of the inherited bleeding disorder hemophilia, we find that oral antigen administration induces three CD4+ Treg subsets, namely FoxP3+LAP-, FoxP3+LAP+, and FoxP3-LAP+. These T cells act in concert to suppress systemic antibody production induced by therapeutic protein administration. Whilst both FoxP3+LAP+ and FoxP3-LAP+ CD4+ T cells express membrane-bound TGF-β (latency associated peptide, LAP), phenotypic, functional, and single cell transcriptomic analyses reveal distinct characteristics in the two subsets. As judged by an increase in IL-2Rα and TCR signaling, elevated expression of co-inhibitory receptor molecules and upregulation of the TGFβ and IL-10 signaling pathways, FoxP3+LAP+ cells are an activated form of FoxP3+LAP- Treg. Whereas FoxP3-LAP+ cells express low levels of genes involved in TCR signaling or co-stimulation, engagement of the AP-1 complex members Jun/Fos and Atf3 is most prominent, consistent with potent IL-10 production. Single cell transcriptomic analysis further reveals that engagement of the Jun/Fos transcription factors is requisite for mediating TGFβ expression. This can occur via an Il2ra dependent or independent process in FoxP3+LAP+ or FoxP3-LAP+ cells respectively. Surprisingly, both FoxP3+LAP+ and FoxP3-LAP+ cells potently suppress and induce FoxP3 expression in CD4+ conventional T cells. In this process, FoxP3-LAP+ cells may themselves convert to FoxP3+ Treg. We conclude that orally induced suppression is dependent on multiple regulatory cell types with complementary and interconnected roles.Item Loss of Diurnal Oscillatory Rhythms in Gut Microbiota Correlates with Changes in Circulating Metabolites in Type 2 Diabetic db/db Mice(MDPI, 2019-09-29) Beli, Eleni; Prabakaran, Samantha; Krishnan, Preethi; Evans-Molina, Carmella; Grant, Maria B.; Pediatrics, School of MedicineOur hypothesis is that diabetes leads to loss of diurnal oscillatory rhythms in gut microbiota altering circulating metabolites. We performed an observational study where we compared diurnal changes of the gut microbiota with temporal changes of plasma metabolites. Metadata analysis from bacterial DNA from fecal pellets collected from 10-month old control (db/m) and type 2 diabetic (db/db) mice every 4 h for a 24-h period was used for prediction analysis. Blood plasma was collected at a day and night time points and was used for untargeted global metabolomic analysis. Feeding and activity behaviors were recorded. Our results show that while diabetic mice exhibited feeding and activity behavior similar to control mice, they exhibited a loss of diurnal oscillations in bacteria of the genus Akkermansia, Bifidobacterium, Allobaculum, Oscillospira and a phase shift in the oscillations of g.Prevotella, proteobacteria, and actinobacteria. Analysis of the circulating metabolites showed alterations in the diurnal pattern of metabolic pathways where bacteria have been implicated, such as the histidine, betaine, and methionine/cysteine pathway, mitochondrial function and the urea cycle. Functional analysis of the differential microbes revealed that during the day, when mice are asleep, the microbes of diabetic mice were enriched in processing carbon and pyruvate metabolic pathways instead of xenobiotic degradation as was observed for control mice. Altogether, our study suggests that diabetes led to loss of rhythmic oscillations of many gut microbiota with possible implications for temporal regulation of host metabolic pathways.Item miR-146a-5p mediates inflammation-induced β cell mitochondrial dysfunction and apoptosis(bioRxiv, 2024-03-19) Krishnan, Preethi; Branco, Renato Chaves Souto; Weaver, Staci A.; Chang, Garrick; Lee, Chih-Chun; Syed, Farooq; Evans-Molina, Carmella; Medicine, School of MedicineWe previously showed that miR-146a-5p is upregulated in pancreatic islets treated with pro-inflammatory cytokines. Others have reported that miR-146a-5p overexpression is associated with β cell apoptosis and impaired insulin secretion. However, the molecular mechanisms mediating these effects remain elusive. To investigate the role of miR-146a-5p in β cell function, we developed stable MIN6 cell lines to either overexpress or inhibit the expression of miR-146a-5p. Monoclonal cell populations were treated with pro-inflammatory cytokines (IL-1β, IFNγ, and TNFα) to model T1D in vitro. We found that overexpression of miR-146a-5p increased cell death under conditions of inflammatory stress, whereas inhibition of miR-146a-5p reversed these effects. Additionally, inhibition of miR-146a-5p increased mitochondrial DNA copy number, respiration rate, and ATP production. Further, RNA sequencing data showed enrichment of pathways related to insulin secretion, apoptosis, and mitochondrial function when the expression levels of miR-146a-5p were altered. Finally, a temporal increase in miR-146a-5p expression levels and a decrease in mitochondria function markers was observed in islets derived from NOD mice. Collectively, these data suggest that miR-146a-5p may promote β cell dysfunction and death during inflammatory stress by suppressing mitochondrial function.Item miR-146a-5p mediates inflammation-induced β cell mitochondrial dysfunction and apoptosis(Elsevier, 2024) Krishnan, Preethi; Branco, Renato Chaves Souto; Weaver, Staci A.; Chang, Garrick; Lee, Chih-Chun; Syed, Farooq; Evans-Molina, Carmella; Medicine, School of MedicineWe previously showed that miR-146a-5p is upregulated in pancreatic islets treated with proinflammatory cytokines. Others have reported that miR-146a-5p overexpression is associated with β cell apoptosis and impaired insulin secretion. However, the molecular mechanisms mediating these effects remain elusive. To investigate the role of miR-146a-5p in β cell function, we developed stable MIN6 cell lines to either overexpress or inhibit the expression of miR-146a-5p. Monoclonal cell populations were treated with proinflammatory cytokines (interleukin-1β, interferonγ, and tumor necrosis factor α) to model type 1 diabetes in vitro. We found that overexpression of miR-146a-5p increased cell death under conditions of inflammatory stress and led to mitochondrial membrane depolarization, whereas inhibition of miR-146a-5p reversed these effects. Additionally, inhibition of miR-146a-5p increased insulin secretion, mitochondrial DNA copy number, respiration rate, and ATP production. Further, RNA-seq data showed enrichment of pathways related to insulin secretion, apoptosis, and mitochondrial function when the expression levels of miR-146a-5p were altered. Finally, a temporal increase in miR-146a-5p expression levels and a decrease in mitochondria function markers were observed in islets derived from nonobese diabetic mice. Collectively, these data suggest that miR-146a-5p may promote β cell dysfunction and death during inflammatory stress by suppressing mitochondrial function.Item Pharmacological inhibition of tyrosine protein-kinase 2 reduces islet inflammation and delays type 1 diabetes onset in mice(bioRxiv, 2024-05-09) Syed, Farooq; Ballew, Olivia; Lee, Chih-Chun; Rana, Jyoti; Krishnan, Preethi; Castela, Angela; Weaver, Staci A.; Chalasani, Namratha Shivani; Thomaidou, Sofia F.; Demine, Stephane; Chang, Garrick; de Brachène, Alexandra Coomans; Alvelos, Maria Ines; Marselli, Lorella; Orr, Kara; Felton, Jamie L.; Liu, Jing; Marchetti, Piero; Zaldumbide, Arnaud; Scheuner, Donalyn; Eizirik, Decio L.; Evans-Molina, Carmella; Pediatrics, School of MedicineTyrosine protein-kinase 2 (TYK2), a member of the Janus kinase family, mediates inflammatory signaling through multiple cytokines, including interferon-α (IFNα), interleukin (IL)-12, and IL-23. Missense mutations in TYK2 are associated with protection against type 1 diabetes (T1D), and inhibition of TYK2 shows promise in the management of other autoimmune conditions. Here, we evaluated the effects of specific TYK2 inhibitors (TYK2is) in pre-clinical models of T1D. First, human β cells, cadaveric donor islets, and iPSC-derived islets were treated in vitro with IFNα in combination with a small molecule TYK2i (BMS-986165 or a related molecule BMS-986202). TYK2 inhibition prevented IFNα-induced β cell HLA class I up-regulation, endoplasmic reticulum stress, and chemokine production. In co-culture studies, pre-treatment of β cells with a TYK2i prevented IFNα-induced activation of T cells targeting an epitope of insulin. In vivo administration of BMS-986202 in two mouse models of T1D (RIP-LCMV-GP mice and NOD mice) reduced systemic and tissue-localized inflammation, prevented β cell death, and delayed T1D onset. Transcriptional phenotyping of pancreatic islets, pancreatic lymph nodes (PLN), and spleen during early disease pathogenesis highlighted a role for TYK2 inhibition in modulating signaling pathways associated with inflammation, translational control, stress signaling, secretory function, immunity, and diabetes. Additionally, TYK2i treatment changed the composition of innate and adaptive immune cell populations in the blood and disease target tissues, resulting in an immune phenotype with a diminished capacity for β cell destruction. Overall, these findings indicate that TYK2i has beneficial effects in both the immune and endocrine compartments in models of T1D, thus supporting a path forward for testing TYK2 inhibitors in human T1D.Item Profiling of RNAs from Human Islet-Derived Exosomes in a Model of Type 1 Diabetes(MDPI, 2019-12) Krishnan, Preethi; Syed, Farooq; Jiyun Kang, Nicole; G. Mirmira, Raghavendra; Evans-Molina, Carmella; Medicine, School of MedicineType 1 diabetes (T1D) is characterized by the immune-mediated destruction of insulin-producing islet β cells. Biomarkers capable of identifying T1D risk and dissecting disease-related heterogeneity represent an unmet clinical need. Toward the goal of informing T1D biomarker strategies, we profiled coding and noncoding RNAs in human islet-derived exosomes and identified RNAs that were differentially expressed under proinflammatory cytokine stress conditions. Human pancreatic islets were obtained from cadaveric donors and treated with/without IL-1β and IFN-γ. Total RNA and small RNA sequencing were performed from islet-derived exosomes to identify mRNAs, long noncoding RNAs, and small noncoding RNAs. RNAs with a fold change ≥1.3 and a p-value <0.05 were considered as differentially expressed. mRNAs and miRNAs represented the most abundant long and small RNA species, respectively. Each of the RNA species showed altered expression patterns with cytokine treatment, and differentially expressed RNAs were predicted to be involved in insulin secretion, calcium signaling, necrosis, and apoptosis. Taken together, our data identify RNAs that are dysregulated under cytokine stress in human islet-derived exosomes, providing a comprehensive catalog of protein coding and noncoding RNAs that may serve as potential circulating biomarkers in T1D.Item SERCA2 regulates proinsulin processing and processing enzyme maturation in pancreatic beta cells(Springer, 2023) Iida, Hitoshi; Kono, Tatsuyoshi; Lee, Chih‑Chun; Krishnan, Preethi; Arvin, Matthew C.; Weaver, Staci A.; Jarvela, Timothy S.; Branco, Renato C. S.; McLaughlin, Madeline R.; Bone, Robert N.; Tong, Xin; Arvan, Peter; Lindberg, Iris; Evans‑Molina, Carmella; Medicine, School of MedicineAims/hypothesis: Increased circulating levels of incompletely processed insulin (i.e. proinsulin) are observed clinically in type 1 and type 2 diabetes. Previous studies have suggested that Ca2+ signalling within beta cells regulates insulin processing and secretion; however, the mechanisms that link impaired Ca2+ signalling with defective insulin maturation remain incompletely understood. Methods: We generated mice with beta cell-specific sarcoendoplasmic reticulum Ca2+ ATPase-2 (SERCA2) deletion (βS2KO mice) and used an INS-1 cell line model of SERCA2 deficiency. Whole-body metabolic phenotyping, Ca2+ imaging, RNA-seq and protein processing assays were used to determine how loss of SERCA2 impacts beta cell function. To test key findings in human model systems, cadaveric islets were treated with diabetogenic stressors and prohormone convertase expression patterns were characterised. Results: βS2KO mice exhibited age-dependent glucose intolerance and increased plasma and pancreatic levels of proinsulin, while endoplasmic reticulum (ER) Ca2+ levels and glucose-stimulated Ca2+ synchronicity were reduced in βS2KO islets. Islets isolated from βS2KO mice and SERCA2-deficient INS-1 cells showed decreased expression of the active forms of the proinsulin processing enzymes PC1/3 and PC2. Additionally, immunofluorescence staining revealed mis-location and abnormal accumulation of proinsulin and proPC2 in the intermediate region between the ER and the Golgi (i.e. the ERGIC) and in the cis-Golgi in beta cells of βS2KO mice. Treatment of islets from human donors without diabetes with high glucose and palmitate concentrations led to reduced expression of the active forms of the proinsulin processing enzymes, thus phenocopying the findings observed in βS2KO islets and SERCA2-deficient INS-1 cells. Similar findings were observed in wild-type mouse islets treated with brefeldin A, a compound that perturbs ER-to-Golgi trafficking. Conclusions/interpretation: Taken together, these data highlight an important link between ER Ca2+ homeostasis and proinsulin processing in beta cells. Our findings suggest a model whereby chronic ER Ca2+ depletion due to SERCA2 deficiency impairs the spatial regulation of prohormone trafficking, processing and maturation within the secretory pathway. Data availability: RNA-seq data have been deposited in the Gene Expression Omnibus (GEO; accession no.: GSE207498).Item Stromal Interaction Molecule 1 Maintains β-Cell Identity and Function in Female Mice Through Preservation of G-Protein–Coupled Estrogen Receptor 1 Signaling(American Diabetes Association, 2023) Sohn, Paul; McLaughlin, Madeline R.; Krishnan, Preethi; Wu, Wenting; Slak Rupnik, Marjan; Takasu, Akira; Senda, Toshiya; Lee, Chih-Chun; Kono, Tatsuyoshi; Evans-Molina, Carmella; Anatomy, Cell Biology and Physiology, School of MedicineAltered endoplasmic reticulum (ER) Ca2+ signaling has been linked with β-cell dysfunction and diabetes development. Store-operated Ca2+ entry replenishes ER Ca2+ through reversible gating of plasma membrane Ca2+ channels by the ER Ca2+ sensor, stromal interaction molecule 1 (STIM1). For characterization of the in vivo impact of STIM1 loss, mice with β-cell-specific STIM1 deletion (STIM1Δβ mice) were generated and challenged with high-fat diet. Interestingly, β-cell dysfunction was observed in female, but not male, mice. Female STIM1Δβ mice displayed reductions in β-cell mass, a concomitant increase in α-cell mass, and reduced expression of markers of β-cell maturity, including MafA and UCN3. Consistent with these findings, STIM1 expression was inversely correlated with HbA1c levels in islets from female, but not male, human organ donors. Mechanistic assays demonstrated that the sexually dimorphic phenotype observed in STIM1Δβ mice was due, in part, to loss of signaling through the noncanonical 17-β estradiol receptor (GPER1), as GPER1 knockdown and inhibition led to a similar loss of expression of β-cell maturity genes in INS-1 cells. Together, these data suggest that STIM1 orchestrates pancreatic β-cell function and identity through GPER1-mediated estradiol signaling.