- Browse by Author
Browsing by Author "Kratky, Dagmar"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Lysosomal Acid Lipase Hydrolyzes Retinyl Ester and Affects Retinoid Turnover(American Society for Biochemistry & Molecular Biology, 2016-08-19) Grumet, Lukas; Eichmann, Thomas O.; Taschler, Ulrike; Zierler, Kathrin A.; Leopold, Christina; Moustafa, Tarek; Radovic, Branislav; Romauch, Matthias; Yan, Cong; Du, Hong; Haemmerle, Guenter; Zechner, Rudolf; Fickert, Peter; Kratky, Dagmar; Zimmermann, Robert; Lass, Achim; Department of Pathology and Laboratory Medicine, IU School of MedicineLysosomal acid lipase (LAL) is essential for the clearance of endocytosed cholesteryl ester and triglyceride-rich chylomicron remnants. Humans and mice with defective or absent LAL activity accumulate large amounts of cholesteryl esters and triglycerides in multiple tissues. Although chylomicrons also contain retinyl esters (REs), a role of LAL in the clearance of endocytosed REs has not been reported. In this study, we found that murine LAL exhibits RE hydrolase activity. Pharmacological inhibition of LAL in the human hepatocyte cell line HepG2, incubated with chylomicrons, led to increased accumulation of REs in endosomal/lysosomal fractions. Furthermore, pharmacological inhibition or genetic ablation of LAL in murine liver largely reduced in vitro acid RE hydrolase activity. Interestingly, LAL-deficient mice exhibited increased RE content in the duodenum and jejunum but decreased RE content in the liver. Furthermore, LAL-deficient mice challenged with RE gavage exhibited largely reduced post-prandial circulating RE content, indicating that LAL is required for efficient nutritional vitamin A availability. In summary, our results indicate that LAL is the major acid RE hydrolase and required for functional retinoid homeostasis.Item Lysosomal acid lipase regulates VLDL synthesis and insulin sensitivity in mice(Springer-Verlag, 2016-08) Radović, Branislav; Vujić, Nemanja; Leopold, Christina; Schlager, Stefanie; Goeritzer, Madeleine; Patankar, Jay V.; Korbelius, Melanie; Kolb, Dagmar; Reindl, Julia; Wegscheider, Martin; Tomin, Tamara; Birner-Gruenberger, Ruth; Schittmayer, Matthias; Groschner, Lukas; Magnes, Christoph; Diwoky, Clemens; Frank, Saša; Steyrer, Ernst; Du, Hong; Graier, Wolfgang F.; Madl, Tobias; Kratky, Dagmar; Department of Pathology and Laboratory Medicine, IU School of MedicineAIMS/HYPOTHESIS: Lysosomal acid lipase (LAL) hydrolyses cholesteryl esters and triacylglycerols (TG) within lysosomes to mobilise NEFA and cholesterol. Since LAL-deficient (Lal (-/-) ) mice suffer from progressive loss of adipose tissue and severe accumulation of lipids in hepatic lysosomes, we hypothesised that LAL deficiency triggers alternative energy pathway(s). METHODS: We studied metabolic adaptations in Lal (-/-) mice. RESULTS: Despite loss of adipose tissue, Lal (-/-) mice show enhanced glucose clearance during insulin and glucose tolerance tests and have increased uptake of [(3)H]2-deoxy-D-glucose into skeletal muscle compared with wild-type mice. In agreement, fasted Lal (-/-) mice exhibit reduced glucose and glycogen levels in skeletal muscle. We observed 84% decreased plasma leptin levels and significantly reduced hepatic ATP, glucose, glycogen and glutamine concentrations in fed Lal (-/-) mice. Markedly reduced hepatic acyl-CoA concentrations decrease the expression of peroxisome proliferator-activated receptor α (PPARα) target genes. However, treatment of Lal (-/-) mice with the PPARα agonist fenofibrate further decreased plasma TG (and hepatic glucose and glycogen) concentrations in Lal (-/-) mice. Depletion of hepatic nuclear factor 4α and forkhead box protein a2 in fasted Lal (-/-) mice might be responsible for reduced expression of microsomal TG transfer protein, defective VLDL synthesis and drastically reduced plasma TG levels. CONCLUSIONS/INTERPRETATION: Our findings indicate that neither activation nor inactivation of PPARα per se but rather the availability of hepatic acyl-CoA concentrations regulates VLDL synthesis and subsequent metabolic adaptations in Lal (-/-) mice. We conclude that decreased plasma VLDL production enhances glucose uptake into skeletal muscle to compensate for the lack of energy supply.