- Browse by Author
Browsing by Author "Koziel, Jillian E."
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item Medical genetics and epigenetics of telomerase(Wiley, 2011-03) Koziel, Jillian E.; Fox, Melanie J.; Steding, Catherine E.; Sprouse, Alyssa A.; Herbert, Brittney-Shea; Department of Medical & Molecular Genetics, IU School of MedicineTelomerase is a specialized reverse transcriptase that extends and maintains the terminal ends of chromosomes, or telomeres. Since its discovery in 1985 by Nobel Laureates Elizabeth Blackburn and Carol Greider, thousands of articles have emerged detailing its significance in telomere function and cell survival. This review provides a current assessment on the importance of telomerase regulation and relates it in terms of medical genetics. In this review, we discuss the recent findings on telomerase regulation, focusing on epigenetics and non-coding RNAs regulation of telomerase, such as microRNAs and the recently discovered telomeric-repeat containing RNA transcripts. Human genetic disorders that develop due to mutations in telomerase subunits, the role of single nucleotide polymorphisms in genes encoding telomerase components and diseases as a result of telomerase regulation going awry are also discussed. Continual investigation of the complex regulation of telomerase will further our insight into the use of controlling telomerase activity in medicine.Item Phenotypic plasticity in normal breast derived epithelial cells(Biomed Central, 2014) Sauder, Candice A. M.; Koziel, Jillian E.; Choi, MiRan; Fox, Melanie J.; Grimes, Brenda R.; Badve, Sunil S.; Blosser, Rachel J.; Radovich, Milan; Lam, Christina C.; Vaughan, Melville B.; Herbert, Brittney-Shea; Clare, Susan E.; Pathology and Laboratory Medicine, School of MedicineBackground Normal, healthy human breast tissue from a variety of volunteer donors has become available for research thanks to the establishment of the Susan G. Komen for the Cure® Tissue Bank at the IU Simon Cancer Center (KTB). Multiple epithelial (K-HME) and stromal cells (K-HMS) were established from the donated tissue. Explant culture was utilized to isolate the cells from pieces of breast tissue. Selective media and trypsinization were employed to select either epithelial cells or stromal cells. The primary, non-transformed epithelial cells, the focus of this study, were characterized by immunohistochemistry, flow cytometry, and in vitro cell culture. Results All of the primary, non-transformed epithelial cells tested have the ability to differentiate in vitro into a variety of cell types when plated in or on biologic matrices. Cells identified include stratified squamous epithelial, osteoclasts, chondrocytes, adipocytes, neural progenitors/neurons, immature muscle and melanocytes. The cells also express markers of embryonic stem cells. Conclusions The cell culture conditions employed select an epithelial cell that is pluri/multipotent. The plasticity of the epithelial cells developed mimics that seen in metaplastic carcinoma of the breast (MCB), a subtype of triple negative breast cancer; and may provide clues to the origin of this particularly aggressive type of breast cancer. The KTB is a unique biorepository, and the normal breast epithelial cells isolated from donated tissue have significant potential as new research tools.Item The telomerase inhibitor imetelstat alone, and in combination with trastuzumab, decreases the cancer stem cell population and self-renewal of HER2+ breast cancer cells(Springer, 2015-02) Koziel, Jillian E.; Herbert, Brittney-Shea; Medical & Molecular Genetics, School of MedicineCancer stem cells (CSCs) are thought to be responsible for tumor progression, metastasis, and recurrence. HER2 overexpression is associated with increased CSCs, which may explain the aggressive phenotype and increased likelihood of recurrence for HER2+ breast cancers. Telomerase is reactivated in tumor cells, including CSCs, but has limited activity in normal tissues, providing potential for telomerase inhibition in anti-cancer therapy. The purpose of this study was to investigate the effects of a telomerase antagonistic oligonucleotide, imetelstat (GRN163L), on CSC and non-CSC populations of HER2+ breast cancer cell lines. The effects of imetelstat on CSC populations of HER2+ breast cancer cells were measured by ALDH activity and CD44/24 expression by flow cytometry as well as mammosphere assays for functionality. Combination studies in vitro and in vivo were utilized to test for synergism between imetelstat and trastuzumab. Imetelstat inhibited telomerase activity in both subpopulations. Moreover, imetelstat alone and in combination with trastuzumab reduced the CSC fraction and inhibited CSC functional ability, as shown by decreased mammosphere counts and invasive potential. Tumor growth rate was slower in combination-treated mice compared to either drug alone. Additionally, there was a trend toward decreased CSC marker expression in imetelstat-treated xenograft cells compared to vehicle control. Furthermore, the observed decrease in CSC marker expression occurred prior to and after telomere shortening, suggesting that imetelstat acts on the CSC subpopulation in telomere length-dependent and -independent mechanisms. Our study suggests addition of imetelstat to trastuzumab may enhance the effects of HER2 inhibition therapy, especially in the CSC population.Item The telomerase inhibitor imetelstat alone, and in combination with trastuzumab, decreases the cancer stem cell population and self-renewal of HER2+ breast cancer cells.(Springer, 2015-02) Koziel, Jillian E.; Herbert, Brittney-Shea; Department of Medical & Molecular Genetics, IU School of MedicineCancer stem cells (CSCs) are thought to be responsible for tumor progression, metastasis, and recurrence. HER2 overexpression is associated with increased CSCs, which may explain the aggressive phenotype and increased likelihood of recurrence for HER2(+) breast cancers. Telomerase is reactivated in tumor cells, including CSCs, but has limited activity in normal tissues, providing potential for telomerase inhibition in anti-cancer therapy. The purpose of this study was to investigate the effects of a telomerase antagonistic oligonucleotide, imetelstat (GRN163L), on CSC and non-CSC populations of HER2(+) breast cancer cell lines. The effects of imetelstat on CSC populations of HER2(+) breast cancer cells were measured by ALDH activity and CD44/24 expression by flow cytometry as well as mammosphere assays for functionality. Combination studies in vitro and in vivo were utilized to test for synergism between imetelstat and trastuzumab. Imetelstat inhibited telomerase activity in both subpopulations. Moreover, imetelstat alone and in combination with trastuzumab reduced the CSC fraction and inhibited CSC functional ability, as shown by decreased mammosphere counts and invasive potential. Tumor growth rate was slower in combination-treated mice compared to either drug alone. Additionally, there was a trend toward decreased CSC marker expression in imetelstat-treated xenograft cells compared to vehicle control. Furthermore, the observed decrease in CSC marker expression occurred prior to and after telomere shortening, suggesting that imetelstat acts on the CSC subpopulation in telomere length-dependent and -independent mechanisms. Our study suggests addition of imetelstat to trastuzumab may enhance the effects of HER2 inhibition therapy, especially in the CSC population.