- Browse by Author
Browsing by Author "Khona, Dolly"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Cutaneous Epithelial to Mesenchymal Transition Activator ZEB1 Regulates Wound Angiogenesis and Closure in a Glycemic Status–Dependent Manner(American Diabetes Association, 2019-11) Singh, Kanhaiya; Sinha, Mithun; Pal, Durba; Tabasum, Saba; Gnyawali, Surya C.; Khona, Dolly; Sarkar, Subendu; Mohanty, Sujit K.; Soto-Gonzalez, Fidel; Khanna, Savita; Roy, Sashwati; Sen, Chandan K.; Surgery, School of MedicineEpithelial to mesenchymal transition (EMT) and wound vascularization are two critical interrelated processes that enable cutaneous wound healing. Zinc finger E-box binding homeobox 1 (ZEB1), primarily studied in the context of tumor biology, is a potent EMT activator. ZEB1 is also known to contribute to endothelial cell survival as well as stimulate tumor angiogenesis. The role of ZEB1 in cutaneous wounds was assessed using Zeb1+/− mice, as Zeb1−/− mice are not viable. Quantitative stable isotope labeling by amino acids in cell culture (SILAC) proteomics was used to elucidate the effect of elevated ZEB1, as noted during hyperglycemia. Under different glycemic conditions, ZEB1 binding to E-cadherin promoter was investigated using chromatin immunoprecipitation. Cutaneous wounding resulted in loss of epithelial marker E-cadherin with concomitant gain of ZEB1. The dominant proteins downregulated after ZEB1 overexpression functionally represented adherens junction pathway. Zeb1+/− mice exhibited compromised wound closure complicated by defective EMT and poor wound angiogenesis. Under hyperglycemic conditions, ZEB1 lost its ability to bind E-cadherin promoter. Keratinocyte E-cadherin, thus upregulated, resisted EMT required for wound healing. Diabetic wound healing was improved in ZEB+/− as well as in db/db mice subjected to ZEB1 knockdown. This work recognizes ZEB1 as a key regulator of cutaneous wound healing that is of particular relevance to diabetic wound complication.Item Electroceutical Fabric Lowers Zeta Potential and Eradicates Coronavirus Infectivity upon Contact(2020-05-15) Sen, Abhishek; Khona, Dolly; Ghatak, Subhadip; Gopalakrishnan, Vinoj; Cornetta, Kenneth; Roy, Sashwati; Khanna, Savita; Sen, Chandan; Surgery, School of MedicineCoronavirus with intact infectivity attached to PPE surfaces pose significant threat to the spread of COVID-19. We tested the hypothesis that an electroceutical fabric, generating weak potential difference of 0.5V, disrupts the infectivity of coronavirus upon contact by destabilizing the electrokinetic properties of the virion. Respiratory coronavirus particles (105) were placed in direct contact with the fabric for 1 or 5 minutes. Viral particles (2.5-4x104) were recovered from the fabric. Following one minute of contact, zeta potential of the coronavirus was significantly lowered indicating destabilization of its electrokinetic properties. Size-distribution plot showed appearance of aggregation of the virus. Testing of the cytopathic effects of the virus showed eradication of infectivity as quantitatively assessed by PI-calcein and MTT cell viability tests. This work provides the rationale to consider the studied electroceutical fabric, or other materials with comparable property, as material of choice for the development of PPE in the fight against COVID-19.