- Browse by Author
Browsing by Author "Katner, Simon N."
Now showing 1 - 10 of 10
Results Per Page
Sort Options
Item Caenorhabditis elegans as a model system to identify therapeutics for alcohol use disorders(Elsevier, 2019-06) Katner, Simon N.; Bredhold, Kristin E.; Steagall, Kevin B., III; Bell, Richard L.; Neal-Beliveau, Bethany S.; Cheong, Mi C.; Engleman, Eric A.; Psychiatry, School of MedicineAlcohol use disorders (AUDs) cause serious problems in society and few effective treatments are available. Caenorhabditis elegans (C. elegans) is an excellent invertebrate model to study the neurobiological basis of human behavior with a conserved, fully tractable genome, and a short generation time for fast generation of data at a fraction of the cost of other organisms. C. elegans demonstrate movement toward, and concentration-dependent self-exposure to various psychoactive drugs. The discovery of opioid receptors in C. elegans provided the impetus to test the hypothesis that C. elegans may be used as a medications screen to identify new AUD treatments. We tested the effects of naltrexone, an opioid antagonist and effective treatment for AUDs, on EtOH preference in C. elegans. Six-well agar test plates were prepared with EtOH placed in a target zone on one side and water in the opposite target zone of each well. Worms were treated with naltrexone before EtOH preference testing and then placed in the center of each well. Wild-type worms exhibited a concentration-dependent preference for 50, 70 and 95% EtOH. Naltrexone blocked acute EtOH preference, but had no effect on attraction to food or benzaldehyde in wild-type worms. Npr-17 opioid receptor knockout mutants did not display a preference for EtOH. In contrast, npr-17 opioid receptor rescue mutants exhibited significant EtOH preference behavior, which was attenuated by naltrexone. Chronic EtOH exposure induced treatment resistance and compulsive-like behavior. These data indicate that C. elegans can serve as a model system to identify compounds to treat AUDs.Item Caenorhabditis elegans as a Model to Study the Molecular and Genetic Mechanisms of Drug Addiction(Elsevier, 2016) Engleman, Eric A.; Katner, Simon N.; Neal-Beliveau, Bethany S.; Department of Psychiatry, IU School of MedicineDrug addiction takes a massive toll on society. Novel animal models are needed to test new treatments and understand the basic mechanisms underlying addiction. Rodent models have identified the neurocircuitry involved in addictive behavior and indicate that rodents possess some of the same neurobiologic mechanisms that mediate addiction in humans. Recent studies indicate that addiction is mechanistically and phylogenetically ancient and many mechanisms that underlie human addiction are also present in invertebrates. The nematode Caenorhabditis elegans has conserved neurobiologic systems with powerful molecular and genetic tools and a rapid rate of development that enables cost-effective translational discovery. Emerging evidence suggests that C. elegans is an excellent model to identify molecular mechanisms that mediate drug-induced behavior and potential targets for medications development for various addictive compounds. C. elegans emit many behaviors that can be easily quantitated including some that involve interactions with the environment. Ethanol (EtOH) is the best-studied drug-of-abuse in C. elegans and at least 50 different genes/targets have been identified as mediating EtOH's effects and polymorphisms in some orthologs in humans are associated with alcohol use disorders. C. elegans has also been shown to display dopamine and cholinergic system-dependent attraction to nicotine and demonstrate preference for cues previously associated with nicotine. Cocaine and methamphetamine have been found to produce dopamine-dependent reward-like behaviors in C. elegans. These behavioral tests in combination with genetic/molecular manipulations have led to the identification of dozens of target genes/systems in C. elegans that mediate drug effects. The one target/gene identified as essential for drug-induced behavioral responses across all drugs of abuse was the cat-2 gene coding for tyrosine hydroxylase, which is consistent with the role of dopamine neurotransmission in human addiction. Overall, C. elegans can be used to model aspects of drug addiction and identify systems and molecular mechanisms that mediate drug effects. The findings are surprisingly consistent with analogous findings in higher-level organisms. Further, model refinement is warranted to improve model validity and increase utility for medications development.Item Caenorhabditis elegans Show Preference for Stimulants and Potential as a Model Organism for Medications Screening(Frontiers, 2018-08-30) Engleman, Eric A.; Steagall II, Kevin B.; Bredhold, Kristin E.; Breach, Michaela; Kline, Hannah L.; Bell, Richard L.; Katner, Simon N.; Neal-Beliveau, Bethany S.; Psychiatry, School of MedicineThe nematode Caenorhabditis elegans (C. elegans) is a popular invertebrate model organism to study neurobiological disease states. This is due in part to the intricate mapping of all neurons and synapses of the entire animal, the wide availability of mutant strains, and the genetic and molecular tools that can be used to manipulate the genome and gene expression. We have shown that, C. elegans develops a conditioned preference for cues that had previously been paired with either cocaine or methamphetamine exposure that is dependent on dopamine neurotransmission, similar to findings using place conditioning with rats and mice. In the current study, we show C. elegans also display a preference for, and self-exposure to, cocaine and nicotine. This substance of abuse (SOA) preference response can be selectively blocked by pretreatment with naltrexone and is consistent with the recent discovery of an opioid receptor system in C. elegans. In addition, pre-exposure to the smoking cessation treatment varenicline also inhibits self-exposure to nicotine. Exposure to concentrations of treatments that inhibit SOA preference/self-exposure did not induce any significant inhibition of locomotor activity or affect food or benzaldehyde chemotaxis. These data provide predictive validity for the development of high-throughput C. elegans behavioral medication screens. These screens could enable fast and accurate generation of data to identify compounds that may be effective in treating human addiction. The successful development and validation of such models would introduce powerful and novel tools in the search for new pharmacological treatments for substance use disorders, and provide a platform to study the mechanisms that underlie addictions.Item Modeling Aversion Resistant Alcohol Intake in Indiana Alcohol-Preferring (P) Rats(MDPI, 2022-08-05) Katner, Simon N.; Sentir, Alena M.; Steagall, Kevin B.; Ding, Zheng-Ming; Wetherill, Leah; Hopf, Frederic W.; Engleman, Eric A.; Psychiatry, School of MedicineWith the substantial social and medical burden of addiction, there is considerable interest in understanding risk factors that increase the development of addiction. A key feature of alcohol use disorder (AUD) is compulsive alcohol (EtOH) drinking, where EtOH drinking becomes “inflexible” after chronic intake, and animals, such as humans with AUD, continue drinking despite aversive consequences. Further, since there is a heritable component to AUD risk, some work has focused on genetically-selected, EtOH-preferring rodents, which could help uncover critical mechanisms driving pathological intake. In this regard, aversion-resistant drinking (ARD) takes >1 month to develop in outbred Wistar rats (and perhaps Sardinian-P EtOH-preferring rats). However, ARD has received limited study in Indiana P-rats, which were selected for high EtOH preference and exhibit factors that could parallel human AUD (including front-loading and impulsivity). Here, we show that P-rats rapidly developed compulsion-like responses for EtOH; 0.4 g/L quinine in EtOH significantly reduced female and male intake on the first day of exposure but had no effect after one week of EtOH drinking (15% EtOH, 24 h free-choice paradigm). Further, after 4−5 weeks of EtOH drinking, males but not females showed resistance to even higher quinine (0.5 g/L). Thus, P-rats rapidly developed ARD for EtOH, but only males developed even stronger ARD with further intake. Finally, rats strongly reduced intake of quinine-adulterated water after 1 or 5 weeks of EtOH drinking, suggesting no changes in basic quinine sensitivity. Thus, modeling ARD in P-rats may provide insight into mechanisms underlying genetic predispositions for compulsive drinking and lead to new treatments for AUDs.Item Neural Activity in the Anterior Insula at Drinking Onset and Licking Relates to Compulsion-Like Alcohol Consumption(Society for Neuroscience, 2024-02-28) Starski, Phillip; Morningstar, Mitch D.; Katner, Simon N.; Frasier, Raizel M.; De Oliveira Sergio, Thatiane; Wean, Sarah; Lapish, Christopher C.; Hopf, F. Woodward; Psychiatry, School of MedicineMuch remains unknown about the etiology of compulsion-like alcohol drinking, where consumption persists despite adverse consequences. The role of the anterior insula (AIC) in emotion, motivation, and interoception makes this brain region a likely candidate to drive challenge-resistant behavior, including compulsive drinking. Indeed, subcortical projections from the AIC promote compulsion-like intake in rats and are recruited in heavy-drinking humans during compulsion for alcohol, highlighting the importance of and need for more information about AIC activity patterns that support aversion-resistant responding. Single-unit activity was recorded in the AIC from 15 male rats during alcohol-only and compulsion-like consumption. We found three sustained firing phenotypes, sustained-increase, sustained-decrease, and drinking-onset cells, as well as several firing patterns synchronized with licking. While many AIC neurons had session-long activity changes, only neurons with firing increases at drinking onset had greater activity under compulsion-like conditions. Further, only cells with persistent firing increases maintained activity during pauses in licking, suggesting roles in maintaining drive for alcohol during breaks. AIC firing was not elevated during saccharin drinking, similar to lack of effect of AIC inhibition on sweet fluid intake in many studies. In addition, we observed subsecond changes in AIC neural activity tightly entrained to licking. One lick-synched firing pattern (determined for all licks in a session) predicted compulsion-like drinking, while a separate lick-associated pattern correlated with greater consumption across alcohol intake conditions. Collectively, these data provide a more integrated model for the role of AIC firing in compulsion-like drinking, with important relevance for how the AIC promotes sustained motivated responding more generally.Item Prenatal methadone exposure disrupts behavioral development and alters motor neuron intrinsic properties and local circuitry(eLife Sciences, 2021-03-16) Grecco, Gregory G.; Mork, Briana E.; Huang, Jui-Yen; Metzger, Corinne E.; Haggerty, David L.; Reeves, Kaitlin C.; Gao, Yong; Hoffman, Hunter; Katner, Simon N.; Masters, Andrea R.; Morris, Cameron W.; Newell, Erin A.; Engleman, Eric A.; Baucum, Anthony J.; Kim, Jiuen; Yamamoto, Bryan K.; Allen, Matthew R.; Wu, Yu-Chien; Lu, Hui-Chen; Sheets, Patrick L.; Atwood, Brady K.; Pharmacology and Toxicology, School of MedicineDespite the rising prevalence of methadone treatment in pregnant women with opioid use disorder, the effects of methadone on neurobehavioral development remain unclear. We developed a translational mouse model of prenatal methadone exposure (PME) that resembles the typical pattern of opioid use by pregnant women who first use oxycodone then switch to methadone maintenance pharmacotherapy, and subsequently become pregnant while maintained on methadone. We investigated the effects of PME on physical development, sensorimotor behavior, and motor neuron properties using a multidisciplinary approach of physical, biochemical, and behavioral assessments along with brain slice electrophysiology and in vivo magnetic resonance imaging. Methadone accumulated in the placenta and fetal brain, but methadone levels in offspring dropped rapidly at birth which was associated with symptoms and behaviors consistent with neonatal opioid withdrawal. PME produced substantial impairments in offspring physical growth, activity in an open field, and sensorimotor milestone acquisition. Furthermore, these behavioral alterations were associated with reduced neuronal density in the motor cortex and a disruption in motor neuron intrinsic properties and local circuit connectivity. The present study adds to the limited body of work examining PME by providing a comprehensive, translationally relevant characterization of how PME disrupts offspring physical and neurobehavioral development.Item The Reinforcing Properties of Drugs of Abuse are Attenuated by Naltrexone in Caenorhabditis elegans(Office of the Vice Chancellor for Research, 2016-04-08) Calhoun, Corey A.; Katner, Simon N.; Engleman, Eric A.; Neal-Beliveau, Bethany S.Drug addiction is a chronic, relapsing disease premised on compulsive drug seeking. Previous work from our lab demonstrated that the nematode Caenorhabditis elegans (C. elegans) can be used to examine the reinforcing properties of drugs of abuse. A successful model for studying the reinforcing effects of drugs in C. elegans would greatly aid efforts to discover potential therapeutic interventions for drug addiction. The present study examined preference for morphine, ethanol, cocaine, and a cannabinoid agonist (CB agonist) in C. elegans and the effect of naltrexone, an opioid antagonist, on this behavior. Six-well agar test plates were utilized to test drug preference. Each well had two circular target zones equidistant from the center; 4μl of the targeted drug or water were placed in the center of one of the two target zones within each well. Worms in one group were pre-treated with 10mM naltrexone, while controls were pre-treated with 0.97 mM HCl for 30 min prior to testing. Worms in each treatment group were then placed in the center of each well and allowed to move freely for 30 minutes-images were captured at 10 and 30 minutes. Animals treated with vehicle displayed a significant preference for the aforementioned drugs relative to controls; naltrexone pretreatment significantly ameliorated this effect. Naltrexone had no effect on food or chemoatractant preference, indicating that the effects of naltrexone on drug preference are selective and not due to disruption in general behaviors. These findings suggest that the reinforcing properties of drugs of abuse can be examined in C. elegans and this model may be useful for screening potential pharmacotherapies for drug abuse.Item Selective Breeding for High Alcohol Preference is Associated with Increased Sensitivity to Cannabinoid Reward within the Nucleus Accumbens Shell(Elsevier, 2020-10) Hauser, Sheketha R.; Katner, Simon N.; Waeiss, Robert A.; Truitt, William A.; Bell, Richard L.; McBride, William J.; Rodd, Zachary A.; Psychiatry, School of MedicineRationale: The rate of cannabinoid intake by those with alcohol use disorder (AUD) exceeds that of the general public. The high prevalence of co-abuse of alcohol and cannabis has been postulated to be predicated upon both a common predisposing genetic factor and the interaction of the drugs within the organism. The current experiments examined the effects of cannabinoids in an animal model of AUD. Objectives: The present study assessed the reinforcing properties of a cannabinoid receptor 1 (CB1) agonist self-administered directly into the nucleus accumbens shell (AcbSh) in female Wistar and alcohol-preferring (P) rats. Methods: Following guide cannulae surgery aimed at AcbSh, subjects were placed in an operant box equipped with an 'active lever' (fixed ratio 1; FR1) that caused the delivery of the infusate and an 'inactive lever' that did not. Subjects were arbitrarily assigned to one of seven groups that self-administered either artificial cerebrospinal fluid (aCSF), or 3.125, 6.25, 12.5, or 25 pmol/100 nl of O-1057, a water-soluble CB1 agonist, dissolved in aCSF. The first four sessions of acquisition are followed by aCSF only infusates in sessions 5 and 6 during extinction, and finally the acquisition dose of infusate during session 7 as reinstatement. Results: The CB1 agonist was self-administered directly into the AcbSh. P rats self-administered the CB1 agonist at lower concentrations and at higher rates compared to Wistar rats. Conclusions: Overall, the data indicate selective breeding for high alcohol preference has produced rats divergent in response to cannabinoids within the brain reward pathway. The data support the hypothesis that there can be common genetic factors influencing drug addiction.Item Time-course of extracellular nicotine and cotinine levels in rat brain following administration of nicotine: effects of route and ethanol coadministration(Springer, 2015-02) Katner, Simon N.; Toalston, Jamie E.; Smoker, Michael P.; Rodd, Zachary A.; McBride, William J.; Engleman, Eric A.; Psychiatry, School of MedicineRATIONALE: Nicotine and ethanol are commonly coabused drugs, and nicotine-laced ethanol products are growing in popularity. However, little is known about time-course changes in extracellular nicotine and cotinine levels in rat models of ethanol and nicotine coabuse. OBJECTIVES: The objective of the present study was to determine the time-course changes in brain levels of nicotine and cotinine following subcutaneous (SC) and intragastric (IG) nicotine administration in alcohol-preferring (P) and Wistar rats. METHODS: In vivo microdialysis was used to collect dialysate samples from the nucleus accumbens shell (NACsh) for nicotine and cotinine determinations, following SC administration of (-)-nicotine (0.18, 0.35, and 0.70 mg/kg) in female P and Wistar rats or IG administration of (-)-nicotine (0.35 and 0.70 mg/kg) in 15 % (v/v) ethanol or water in female P rats. RESULTS: SC nicotine produced nicotine and cotinine dialysate levels as high as 51 and 14 ng/ml, respectively. IG administration of 15 % EtOH + 0.70 mg/kg nicotine in P rats resulted in maximal nicotine and cotinine dialysate levels of 19 and 14 ng/ml, respectively, whereas administration of 0.70 mg/kg nicotine in water resulted in maximal nicotine and cotinine levels of 21 and 25 ng/ml, respectively. Nicotine and cotinine levels were detectable within the first 15 and 45 min, respectively, after IG administration. CONCLUSIONS: Overall, the results of this study suggest that nicotine is rapidly adsorbed and produces relevant extracellular brain concentrations of nicotine and its pharmacologically active metabolite, cotinine. The persisting high brain concentrations of cotinine may contribute to nicotine addiction.