- Browse by Author
Browsing by Author "Kaczorowski, Catherine C."
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Discovery of Genes Underlying Cognitive Resilience in Individuals Predisposed to Alzheimer's Disease Risk(Wiley, 2025-01-09) Tsai, Wei; McNiff, Caitlin E.; Reddy, Joseph S.; Wang, Xue; Quicksall, Zachary; Nho, Kwangsik; Dunn, Amy R.; Allen, Mariet; Heckman, Michael G.; Ren, Yingxue; Zhao, Na; Kantarci, Kejal; Mielke, Michelle M.; Petersen, Ronald C.; Kaczorowski, Catherine C.; Carrasquillo, Minerva M.; Saykin, Andrew J.; Ertekin-Taner, Nilüfer; Radiology and Imaging Sciences, School of MedicineBackground: Two main risk factors of Alzheimer’s disease (AD) are aging and APOE‐ε4. However, some individuals remain cognitively normal despite having these risk factors. They are considered “cognitively resilient”. This study aimed to identify molecular factors that confer cognitive resilience in APOE‐ε4 carriers ≥ 80 years of age and may serve as biomarkers. Method: We applied weighted gene co‐expression network analysis (WGCNA) to generate consensus co‐expression networks from blood of participants in two antemortem cohorts, the Mayo Clinic Study of Aging (MCSA, n=105), and the Alzheimer’s Disease Neuroimaging Initiative (ADNI, n=91), using RNA‐sequencing and microarray data, respectively. We associated these networks with resilience (resilient vs non‐resilient), cognitive endophenotypes and hippocampal volume. Preservation between consensus networks from blood and those derived from postmortem brain tissues of AD and control donors from AMP‐AD (n=1174) was evaluated. We validated the human findings in four AD mouse models. Finally, machine learning models were utilized to discriminate cases (AD+mild cognitive impairment (MCI)) from controls in MCSA, ADNI and ANMerge antemortem cohorts. Result: Four consensus networks were significantly correlated with a memory phenotype (logical memory delayed recall=LMDR) and hippocampal volume in both MCSA and ADNI. Among these, blood expression module M3 was most preserved with the brain transcriptome. M3 was enriched with NDUF hub genes that are involved in the mitochondrial respiratory chain. Expression levels of M3 and many blood NDUFs had significant associations with better LMDR and hippocampal volume. In brain, NDUFs were upregulated in controls compared to AD, and their expression levels were associated with better global cognition and decreased AD neuropathology. Many NDUFs were significantly downregulated in the hippocampus or cortex of AD mice compared to wild‐types. Lastly, models that included blood NDUFs improved diagnostic accuracy of AD+MCI compared to models that only included demographic and risk variables (age, sex, APOE‐ε4) in MCSA, ADNI and ANMerge. In MCSA and ADNI, adding NDUFs’ expression to models that included established blood biomarkers (Aβ42/40, ptau181, NFL) further improved diagnostic accuracy. Conclusion: Our results suggest that mitochondrial NDUFs are centrally‐linked peripheral molecular signatures that may be resilience factors against AD and serve as both therapeutic targets and novel diagnostic biomarkers.Item New directions for Alzheimer's disease research from the Jackson Laboratory Center for Alzheimer's and Dementia Research 2022 workshop(Wiley, 2024-03-10) Telpoukhovskaia, Maria A.; Murdy, Thomas J.; Marola, Olivia J.; Charland, Kevin; MacLean, Michael; Luquez, Tain; Lish, Alexandra M.; Neuner, Sarah; Dunn, Amy; Onos, Kristen D.; Wiley, Jesse; Archer, Derek; Huentelman, Matthew J.; Arnold, Matthias; Menon, Vilas; Goate, Alison; Van Eldik, Linda J.; Territo, Paul R.; Howell, Gareth R.; Carter, Gregory W.; O’Connell, Kristen M. S.; Kaczorowski, Catherine C.; 2022 JAX CADR Workshop; Medicine, School of MedicineIntroduction: In September 2022, The Jackson Laboratory Center for Alzheimer's and Dementia Research (JAX CADR) hosted a workshop with leading researchers in the Alzheimer's disease and related dementias (ADRD) field. Methods: During the workshop, the participants brainstormed new directions to overcome current barriers to providing patients with effective ADRD therapeutics. The participants outlined specific areas of focus. Following the workshop, each group used standard literature search methods to provide background for each topic. Results: The team of invited experts identified four key areas that can be collectively addressed to make a significant impact in the field: (1) Prioritize the diversification of disease targets, (2) enhance factors promoting resilience, (3) de-risk clinical pipeline, and (4) centralize data management. Discussion: In this report, we review these four objectives and propose innovations to expedite ADRD therapeutic pipelines.Item Sex differences in the genetic architecture of cognitive resilience to Alzheimer's disease(Oxford University Press, 2022) Eissman, Jaclyn M.; Dumitrescu, Logan; Mahoney, Emily R.; Smith, Alexandra N.; Mukherjee, Shubhabrata; Lee, Michael L.; Scollard, Phoebe; Choi, Seo Eun; Bush, William S.; Engelman, Corinne D.; Lu, Qiongshi; Fardo, David W.; Trittschuh, Emily H.; Mez, Jesse; Kaczorowski, Catherine C.; Hernandez Saucedo, Hector; Widaman, Keith F.; Buckley, Rachel F.; Properzi, Michael J.; Mormino, Elizabeth C.; Yang, Hyun Sik; Harrison, Theresa M.; Hedden, Trey; Nho, Kwangsik; Andrews, Shea J.; Tommet, Douglas; Hadad, Niran; Sanders, R. Elizabeth; Ruderfer, Douglas M.; Gifford, Katherine A.; Zhong, Xiaoyuan; Raghavan, Neha S.; Vardarajan, Badri N.; Alzheimer’s Disease Neuroimaging Initiative (ADNI); Alzheimer’s Disease Genetics Consortium (ADGC); A4 Study Team; Pericak-Vance, Margaret A.; Farrer, Lindsay A.; Wang, Li San; Cruchaga, Carlos; Schellenberg, Gerard D.; Cox, Nancy J.; Haines, Jonathan L.; Keene, C. Dirk; Saykin, Andrew J.; Larson, Eric B.; Sperling, Reisa A.; Mayeux, Richard; Cuccaro, Michael L.; Bennett, David A.; Schneider, Julie A.; Crane, Paul K.; Jefferson, Angela L.; Hohman, Timothy J.; Radiology and Imaging Sciences, School of MedicineApproximately 30% of elderly adults are cognitively unimpaired at time of death despite the presence of Alzheimer's disease neuropathology at autopsy. Studying individuals who are resilient to the cognitive consequences of Alzheimer's disease neuropathology may uncover novel therapeutic targets to treat Alzheimer's disease. It is well established that there are sex differences in response to Alzheimer's disease pathology, and growing evidence suggests that genetic factors may contribute to these differences. Taken together, we sought to elucidate sex-specific genetic drivers of resilience. We extended our recent large scale genomic analysis of resilience in which we harmonized cognitive data across four cohorts of cognitive ageing, in vivo amyloid PET across two cohorts, and autopsy measures of amyloid neuritic plaque burden across two cohorts. These data were leveraged to build robust, continuous resilience phenotypes. With these phenotypes, we performed sex-stratified [n (males) = 2093, n (females) = 2931] and sex-interaction [n (both sexes) = 5024] genome-wide association studies (GWAS), gene and pathway-based tests, and genetic correlation analyses to clarify the variants, genes and molecular pathways that relate to resilience in a sex-specific manner. Estimated among cognitively normal individuals of both sexes, resilience was 20-25% heritable, and when estimated in either sex among cognitively normal individuals, resilience was 15-44% heritable. In our GWAS, we identified a female-specific locus on chromosome 10 [rs827389, β (females) = 0.08, P (females) = 5.76 × 10-09, β (males) = -0.01, P(males) = 0.70, β (interaction) = 0.09, P (interaction) = 1.01 × 10-04] in which the minor allele was associated with higher resilience scores among females. This locus is located within chromatin loops that interact with promoters of genes involved in RNA processing, including GATA3. Finally, our genetic correlation analyses revealed shared genetic architecture between resilience phenotypes and other complex traits, including a female-specific association with frontotemporal dementia and male-specific associations with heart rate variability traits. We also observed opposing associations between sexes for multiple sclerosis, such that more resilient females had a lower genetic susceptibility to multiple sclerosis, and more resilient males had a higher genetic susceptibility to multiple sclerosis. Overall, we identified sex differences in the genetic architecture of resilience, identified a female-specific resilience locus and highlighted numerous sex-specific molecular pathways that may underly resilience to Alzheimer's disease pathology. This study illustrates the need to conduct sex-aware genomic analyses to identify novel targets that are unidentified in sex-agnostic models. Our findings support the theory that the most successful treatment for an individual with Alzheimer's disease may be personalized based on their biological sex and genetic context.